
Quick Visit to Bernoulli Land 
 

Although we have seen the Bernoulli equation and seen it derived before, this 
next note shows its derivation for an uncompressible & inviscid flow.  The 
derivation follows that of Kuethe &Chow most closely (I like it better than 
Anderson).1 
 
Start from inviscid, incompressible momentum equation 
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There is a vector calculus identity: 
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From here, we can make the final re-arrangement: 
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Two common applications: 

1. Steady irrotational flow 
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1 Kuethe and Chow, 5th Ed. Sec 3.3-3.5 
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2. Steady but rotational flow 
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This is a vector equation.  If we dot product this into the streamwise 
direction: 
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Vortex Panel Methods2 

 
Step#1: Replace airfoil surface with panels 

 
Step #2: Distribute singularities on each panel with unknown strengths 
 
In our case we will use vortices distributed such that their strength varies linearly 
from node to node: 
 
Recall a point vortex at the origin is: 
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2 Kuethe and Chow, 5th Ed. Sec. 5.10 
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A point vortex at yx ˆ,ˆ  is: 
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Next, consider an arbitrary panel: 
 

 
 
 
At any js , we will place a vortex with strength ( )js dsγ : 
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Thus, the potential at any ( , )x y due to the entire panel j  is: 
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We will assume linear varying γ  on each panel: 
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With this type of panel, we have m+1 unknowns = 1,,1...3,2,1 +− mmm γγγγγγ , so we 
need m+1 equations. 
 
Step#3: Enforce Flow Tangency at Panel Midpoints 
 
The next step is to enforce some approximation of the boundary conditions at the 
airfoil surface.  To do this, we will enforce flow tangency at the midpoint of each 
panel. 
 
Panel method lingo:  control point is a location where onu =• KK  is enforced. 
 
To do this, we need to find the potential and the velocity at each control point. 
 
The potential has the following form: 
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Suppose freestream has angle α : 
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The required boundary condition is ( ), 0  1i i
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So, let’s carry this out a little further: 
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And recall ( ) ( )
j
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We can re-write these integrals in a compact notation: 
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i.e. 1ijn jC γ =normal velocity from panel j  due to node j  on control point of panel i . 

ii yx ,
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2ijnC = Influence of panel j  due to node 1j +  on control point at panel i  
 
⇒Total normal velocity at control point of panel i due to panel j 1 2 1ij ijn j n jC Cγ γ += +  
So, let’s look at the control point normal velocity 

 
 
So, for panel i , flow tangency looks like: 
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We can write this as a set of m equations for m+1 unknowns. 
 
Question:  What can we do for one more equation? 
 
Step#4: Apply Kutta condition 
 
We need to relate Kutta condition to the unknown vortex strengths jγ .  To do this, 
consider a portion of a vortex panel. 
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Put a contour about differential element ds 
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So, since the Kutta condition requires top bottomU U=  at TE: 
 

. . 0, Kutta conditiont eγ =  
 
For the vortex panel method, this means: 
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Step#5:  Set-up System of Equations & Solve 
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Where =ijI total influence of node j  at control point i  
 
For example: 

3637 2137 nn CCI +=  

 
The problem thus reduces to =Ax b , or, using our notation 
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which we solve to find the vector of γ ’s! 
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Step #6: Post-processing 
 
The final step is to post-process the results to find the pressures and the lift 
acting on the airfoil. 
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So, for our method, this reduces to: 
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Vortex Panel Method Summary 
 
In practice, the vortex panel method used for airfoil flows is a little different than 
the strategy used in the windy city problem.  Here’s a summary: 
 
Step #1: Replace airfoil surface with panels 
 

Note: the trailing edge is double-numbered 1 points,  panelsm m⇒ + . 
 
Step #2: Distribute vortex singularities with linear strength variables on each 

panel 
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This means we have m+1 unknowns: 
 

1,............,3,2,1 +mm γγγγγ  
 
 
Step #3: Enforce flow tangency at panel midpoints 
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Step#4: Apply Kutta condition 
 
Kutta condition becomes: 
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