Viscous Flow: Stress Strain Relationship

Objective: Discuss assumptions which lead to the stress-strain relationship for a Newtonian, linear viscous fluid:

$$
\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \delta_{ij} \lambda \frac{\partial u_k}{\partial x_k}
$$

$$
\frac{\partial u_k}{\partial x_k} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \nabla \cdot \vec{V}
$$

where μ = dynamic viscosity coefficient

 λ = bulk viscosity coefficient

Note: $\delta_{ii} = \begin{cases} 0, \\ 1, \end{cases}$ $\left|j\right|^{-}$ | 1, $i \neq j$ $\delta_{ij} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$ $\begin{cases}\n 0, & j \in \mathbb{Z} \\
1, & j \in \mathbb{Z}\n\end{cases}$ $\sum_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \text{shear strain rate in } x_i, x_j \text{ plane}$ *j* \mathcal{O} *i* $\left[\frac{u_i}{u_i} + \frac{\partial u_j}{\partial x}\right]$ = shear strain rate in x_i, x $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$ $=\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\right)\equiv$

Thus, written in terms of the strain rates, the stress tensor is:

$$
\tau_{ij} = 2\mu\varepsilon_{ij} + \delta_{ij}\lambda \left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}\right)
$$

\nviscous stress
\ndue to shearing
\nof a fluid element
\nviscous stress due to an
\nviscous stress due to an
\nviscous stress due to an
\nversal compression of
\nelement's volume

This stress-strain relationship can be derived by the following two assumptions:

- 1. The shear stress is independent of a rotation of the coordinate system
- 2. The shear stress is at most a linear function of the strain rate tensor. So, for example, τ_w :

$$
\tau_{xy} = a_{11}\varepsilon_{xx} + a_{12}\varepsilon_{xy} + a_{13}\varepsilon_{xz} + a_{22}\varepsilon_{yy} + a_{23}\varepsilon_{yz} + a_{33}\varepsilon_{zz}
$$

Clearly, assumption #2 gives 6 unknowns per shear, a_{11}, a_{12} , etc. Note: why do $\mathcal{E}_{xx}, \mathcal{E}_{zx}$ $\& \mathcal{E}_{zy}$ not appear in this expression for τ_{xy} ? The total number of unknowns for all stresses are: 36. But, this can be eventually reduced by applying #1 to the most general linear form to the two unknowns μ & λ .

Stokes' hypothesis

Stokes hypothesized that the total normal viscous stress on a fluid element surface,

$$
\tau_{xx} + \tau_{yy} + \tau_{zz} = (2\mu + 3\lambda)(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz})
$$

should be zero, i.e. $\tau_{xx} + \tau_{yy} + \tau_{zz} = 0$ so that the normal force (stress) on a surface is only that due to pressure. This requires that

$$
2\mu + 3\lambda = 0 \Rightarrow \lambda = -\frac{2}{3}\mu
$$

Comments

- Experimental studies have indicated that $\lambda \neq -\frac{2}{3}\mu$ 3 $\neq -\frac{2}{3}\mu$ and in general is not negative!
- For incompressible flow, $\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \nabla \cdot \vec{V} = 0$ l
H $\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \nabla \cdot \overline{V} = 0$ so $\tau_{xx} + \tau_{yy} + \tau_{zz} = 0$ regardless of λ.
- **•** For most compressible flows $\nabla \cdot \vec{V}$ is small compared to shearing strains (i.e. $\varepsilon_{xy}, \varepsilon_{yz}$, etc.) so again, Stokes' hypothesis has little impact. So, as a result,

common practice is to assume that $\lambda = -\frac{2}{3}\mu$ 3 $=-\frac{2}{3}\mu$.