Viscous Flow: Stress Strain Relationship

Objective: Discuss assumptions which lead to the stress-strain relationship for a Newtonian, linear viscous fluid:

$$\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \delta_{ij} \lambda \frac{\partial u_k}{\partial x_k}$$
$$\frac{\partial u_k}{\partial x_k} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \nabla \cdot \vec{V}$$

where μ = dynamic viscosity coefficient

 λ = bulk viscosity coefficient

Note: $\delta_{ij} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$ $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \equiv \text{shear strain rate in } x_i, x_j \text{ plane}$

Thus, written in terms of the strain rates, the stress tensor is:

$$\tau_{ij} = \underbrace{2\mu\varepsilon_{ij}}_{\substack{\text{viscous stress}\\ \text{due to shearing}\\ \text{of a fluid element}}} + \underbrace{\delta_{ij}\lambda\left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}\right)}_{\substack{\text{using indicial notation}\\ \text{this is } \varepsilon_{kk}}}_{\substack{\text{viscous stress due to an}\\ \text{overall compression or}\\ \text{element's volume}}}$$

This stress-strain relationship can be derived by the following two assumptions:

- 1. The shear stress is independent of a rotation of the coordinate system
- 2. The shear stress is at most a linear function of the strain rate tensor. So, for example, τ_{xy} :

$$\tau_{xy} = a_{11}\varepsilon_{xx} + a_{12}\varepsilon_{xy} + a_{13}\varepsilon_{xz} + a_{22}\varepsilon_{yy} + a_{23}\varepsilon_{yz} + a_{33}\varepsilon_{zz}$$

Clearly, assumption #2 gives 6 unknowns per shear, a_{11} , a_{12} , etc. Note: why do ε_{yx} , ε_{zx} & ε_{zy} not appear in this expression for τ_{xy} ? The total number of unknowns for all stresses are: 36. But, this can be eventually reduced by applying #1 to the most general linear form to the two unknowns μ & λ .

Stokes' hypothesis

Stokes hypothesized that the total normal viscous stress on a fluid element surface,

$$\tau_{xx} + \tau_{yy} + \tau_{zz} = (2\mu + 3\lambda)(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz})$$

should be zero, i.e. $\tau_{xx} + \tau_{yy} + \tau_{zz} = 0$ so that the normal force (stress) on a surface is only that due to pressure. This requires that

$$2\mu + 3\lambda = 0 \Longrightarrow \lambda = -\frac{2}{3}\mu$$

Comments

- Experimental studies have indicated that $\lambda \neq -\frac{2}{3}\mu$ and in general is not negative!
- For incompressible flow, $\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} = \nabla \cdot \vec{V} = 0$ so $\tau_{xx} + \tau_{yy} + \tau_{zz} = 0$ regardless of λ .
- For most compressible flows $\nabla \cdot \vec{V}$ is small compared to shearing strains (i.e. $\varepsilon_{xv}, \varepsilon_{vz}$, etc.) so again, Stokes' hypothesis has little impact. So, as a result,

common practice is to assume that $\lambda = -\frac{2}{3}\mu$.