Incremental Path Planning
April 4, 2016

Joe Leavitt, Ben Ayton, Jessica Noss, Erlend Harbitz, Jake Barnwell & Sam Pinto



References

e Koenig, S., & Likhachev, M. (2002, July). D* Lite. In AAAI/IAAI (pp. 476-483).

e Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong planning A*. Artificial
Intelligence, 1565(1), 93-146.

e Stentz, A. (1994, May). Optimal and efficient path planning for partially-known
environments. In Proceedings of the IEEE International Conference on
Robotics and Automation.

e Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & Thrun, S. (2005,
June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS
(pp. 262-271).

e Hofmann, A., Fernandez, E., Helbert, J., Smith, S., & Williams, B. (2015).
Reactive Integrated Motion Planning and Execution. In Proceedings of the
Twenty-Fourth International Joint Conference on Atrtificial Intelligence.

2



Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics
Application to Mobile Robotics



Motivation




Motivation




Motivation

New obstacle detected!

!

Replan




Motivation

New obstacle detected!

!

Replan




Motivation

New obstacle detected!

!

Replan




Motivation

New obstacle detected!

!

Replan




Motivation

10



Motivation

1"



Motivation

12



Motivation

13



Motivation

Change detected!

!

Replan

14



Motivation

Environmental Change

15



Motivation

Change detected!

!

Replan

16



Motivation

Change detected!

!

Replan

17



Motivation

18



Motivation - ‘,‘

19



Motivation

20



Motivation

21



Motivation

22



Motivation

23



Motivation

24



Motivation

25



Motivation

26



Motivation

27



RRT

Motivation

© Sertac Karaman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Watch the video on YouTube (https://www.youtube.com/watch?v=vW74bC-Ygb4)

28


https://www.youtube.com/watch?v=vW74bC-Ygb4
https://ocw.mit.edu/help/faq-fair-use/

Motivation

After significant offline computation time...

29



Motivation RRT

© Sertac Karaman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq—fair—use/.

30


https://ocw.mit.edu/help/faq-fair-use/

Problems

e Changing environmental conditions:

o  Obstacles

o Utility or cost

® Sensor limitations:

o  Partial observability

e Computation time:

o Complete, optimal replanning is slow

o  Stay put or move in wrong direction?




Reuse data from previous search!

)

Incremental Search Methods




Incremental APSP

ﬁ Alg. Mean | Std Comp. | Opt.
‘ ‘ i (CX‘F?QEC)’V 0.0425 | 0.0213 | Yes Yes
(a) (b) (c) (d)
ﬁ RRT 0188 | 012 | Prob. | No
RRT
conmect | 0042 004 | Prob. | No
: ‘%! : E : g PRM 012 | 0.08 | Prob. | Asym.
@ ) © )

Courtesy of Hofmann, Andreas et al. License: cc by-nc-sa.

From Hofmann, Fernandez, Helbert, Smith, & Williams (2015) 33




Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics

Application to Mobile Robotics

34



Incremental Search

® Perform graph search

® Repeat:
o Execute path/plan

. 1 2 3 4 5 6
o Receive graph changes 4 9
. 13| 12 12]12 18 18] 18
o Update previous search results A 1 Bnnne
7 6 12/11 (10|10
6|5]|5 11 9
4 8
B 3 4 5 6 7 8
cl 3| 2:| 1A - 8
3 2 3 5 [
3 3 4 6 7 (] 1213
4 7 6 5 5 5 101112 16 | 16
Dl5|s|s 716|l6]6]6]6 9 |10 11 13 15
E 6|le6|6|7 7 7 59101 14 | 14 | 15 | 16 | From Koenig,
7 l2|al2 8 8 9 |o9l0] 1 13| 14 16 | Likhachev, &
35 F 8 |s 8 9 9 10 12 14 17 | Furcy (2004)



asin33
Line

asin33
Line

asin33
Line

asin33
Line


Review of Graph Search Problem

Input: graph search problem S =<gr, w, h,s_,_, s

>
start’ ~goal
\\\h(s

N

1 ’Sgoal)

directed graph: gr =<V, E>

edge eighting function: w: s x s — [®
heuristic function: h: s x Sgoal R
start vertex: s__ . € V

goal vertex: Sgoal € 4

W(S1 ’Sgoal)

W(SZ’SgoaI)

Output: simple path P=<s__ s S L O

>
start 2 """ Tgoal

36



Review of Graph Search Problem

T~ h(s

N

1 ’Sgoal)

e (. cost-so-far

w(s,,s

© g(s) = g(Spredecessor) + (Spredecessor’ S) 903')

e h: heuristic value, cost-to-go

o f(s)=g(s)+ h(s) W(S5:S46a)

h(sz,sgoal)

37



Graph Representations

e Incremental algorithms generalize to any graph (usually non-negative edges).
e Grids used for ease of representation.

4-Connected Graph 8-Connected Graph
A RIAN| P
‘H- o ‘|- -
v e | ¥ | N
Admissible Manhattan Distance max(Ax, Ay)

Heuristic: = Ax + Ay (with unit edge weights)

38



Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm

" e {9
4 7




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




Relaxation - Dijkstra’s Algorithm




How to Reuse Previous Search Results?

e Store optimal results:

o shortest paths

o g-values

® Find inconsistencies:

O

local consistency

e Make consistent:

O

relaxations

1 2 3
271]0
2Bl |
3 )

3
3 P

[::3]

(a) (b) (c)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
"Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146. From Koenig,

Likhachev, &
55 Furcy (2004)


http://www.sciencedirect.com
https://doi.org/10.1016/j.artint.2003.12.001

Incremental Search Methods - Examples

e General
o Incremental APSP
o Lifelong Planning A* (LPA¥)
o Dynamics Strictly eakly Superior Function - Fixed Point (DynamicsSWSF-FP)
O

e Mobile Robots
o D*
o D* Lite
e emporal Planning
o Incremental Temporal Consistency (ITC)

e Propositional Satisfiability
o Incremental Unit Propagation

56



D* Incremental Path Planning Approach

Heuristic Incremental Efficient Incremental
Search + Search = Path Planning
(e.g. AY) (e.g. DynamicsSWSF-FP) (e.g. LPA*, D* Lite, ...)
Optimal & Fast Fast,

Efficient Replanning Optimal

Replanning

57



Initial Search

uninformed search heuristic search

breadth-first search

complete search

incremental search

From Koenig,
Likhachev, &
Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
'|Life|ong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

58


swani1
Line

http://www.sciencedirect.com
https://doi.org/10.1016/j.artint.2003.12.001

Follow-on Search

uninformed search heuristic search
breadth-first search
=
g
§
o
3
8
DynamicSWSF-FP (with early termination) Lifelong Planning A*
E
2
5
s
3]
. From Koenig,
Likhachev, &
Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
'|Life|ong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

59


swani1
Line

http://www.sciencedirect.com
https://doi.org/10.1016/j.artint.2003.12.001

Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics

Application to Mobile Robotics

60



A* Reminder

A* is best-first search from start to goal sorted by a cost f(s):

f(s) = g(s) + h(s.s )
f(s) = total node cost
d(s) = path cost to reach vertex from s__.

h(s,sgoal) = heuristic for cost to reach vertex S goal from vertex s

61



A*: Choosing Between Ties

Introduce a new notation: f(s) = < f.(s), f(s)

f(s) =< g(s) + h(s,;s ). 9(s)?




A*: Choosing Between Ties

Introduce a new notation: f(s) = < f.(s), f(s)

f(s) =< g(s) + h(s,;s ). 9(s)?




A*: Choosing Between Ties

Introduce a new notation: f(s) = < f.(s), f(s)

f(s) =< g(s) + h(s,;s ). 9(s)?




A*: Choosing Between Ties

Introduce a new notation: f(s) = < f.(s), f(s)

f(s) =< g(s) + h(s,;s ). 9(s)?




Successors and Predecessors

Successors of node s: Every node that can be reached from s, Succ(s)

66



Successors and Predecessors

Successors of node s: Every node that can be reached from s, Succ(s)

67



Successors and Predecessors

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

68



Successors and Predecessors

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

69



What is D* Lite?

Efficient repeated best-first search through a graph with changing edge weights as
the graph is traversed.

S S — s Sy
\_/ Sart

Can be viewed as replanning through relaxation of path costs.

70



Reformulation: Minimize Recomputation

When the start changes, the path cost from start to s is not preserved.

Case 1: Case 2:




Reformulation: Minimize Recomputation

Reformulate search from goal to start. Path cost from goal to s is preserved.

Case 1: Case 2:




Overall D* Lite:

1.
2
3.
4

Initialize all nodes as unexpanded.

Best-first search until s_,_ is consistent with neighbors and expanded.
Move to next best vertex.

If any edge costs change:

a. Track how heuristics have changed.

b. Update source nodes of changed edges.

Repeat from 2.

73




Overall D* Lite:

1. Initialize all nodes as unexpanded.

Move to next best vertex.

3
4. If any edge costs change:
Most computation

a. Track how heuristics have changed.
b. Update source nodes of changed edges.

5. Repeat from 2.

74



Overall D* Lite:

Initialize all nodes as unexpanded.

1
2. Bestfirst search until s_,_. is consistent with neighbors and expanded.
3

Move to next best vertex.

‘4. If any edge costs change: 54/'\

a. Track how heuristics have changed. Incremental component

b. Update source nodes of changed edges.

5. Repeat from 2.

75



Overall D* Lite:

Initialize all nodes as unexpanded.

1
2. Bestfirst search until s_,_. is consistent with neighbors and expanded.

________________________________________________

4. If any edge costs change:
a. Track how heuristics have changed.
b. Update source nodes of changed edges.

5. Repeat from 2.

76



Extracting a Path Given Path Cost

Move from s__. to the successor which gives s__, the lowest path cost.

Sstart (_ argmlns’ € Succ(sstart) (C(Sstart’s,) + g(S,))




Overall D* Lite:

1. Initialize all nodes as unexpanded.

3. Move to next best vertex.
4. If any edge costs change:

a. Track how heuristics have changed.

________________________________________________________________________

5. Repeat from 2.

78



Handling Weight Changes Locally

Self-consistent graph:

9(S) = Min, _ g0 (9(S) *+ €(5.8))

May no longer be true when edge weights change!

79



Handling Weight Changes Locally

Changes propagate to predecessors.
For efficient search, update lowest cost nodes first.

=> Use a priority queue like A*. Update nodes until the goal is first expanded.

80



Handling Weight Changes Locally

Store an additional value;

rhs(s) = Ming _ g0 (9(S) + €(8,8)

Local inconsistency: rhs(s) # g(s)




Handling Weight Changes Locally

Store an additional value;

rhs(s) = Ming _ g0 (9(S) + €(8,8)

Local inconsistency rhs(s) # g(s)




Local Inconsistencies

Signal recomputation is necessary for node and predecessors

1. Locally overconsistent:

g(s) > rhs(s)

2. Locally underconsistent:

g(s) <rhs(s)

83



Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.

84



Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.

85



Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.

® Q=[..,s,..]

86



Updating and Expanding Nodes

Expand by taking it off the priority queue and changing g. Expand in order of total
cost:

(min[ g(s), rhs(s) 1+h(s,s_. ), min[g(s), rhs(s)] >




Updating and Expanding Nodes

Expand by taking it off the priority queue and changing g. Expand in order of total
cost:

(min[ g(s), rhs(s) 1+h(s,s_. ), min[g(s), rhs(s)] >

Q=1.]

88



Updating and Expanding Nodes

Why not recompute g(s) at the same time as rhs(s)?

- Make sure that we have updated all successors that could lower the total cost

f(s) first.
=> s can be updated multiple times before expansion, so rhs(s) can change on
the queue.

89



g(s) > rhs(s) (Overconsistent):

New path cost rhs(s) is better than the old path cost g(s).

Immediately update g(s) to rhs(s) and propagate to all predecessors.

=> Set g(s) =rhs(s)
=> Update all predecessors of s

Vertex is now locally consistent and will remain that way

90



g(s) < rhs(s) (Underconsistent):

Old path cost g(s) is better than new path cost rhs(s).
Delay vertex expansion and propagate to all predecessors.

=> Setg(s) =«
=> Update all predecessors of s and s itself

Vertex is now locally consistent or locally overconsistent. It will remain on the
queue until rhs(s) is the next best cost.

91



g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):

Assume after update:




g(s) < rhs(s) (Underconsistent):

Assume after update:




g(s) < rhs(s) (Underconsistent):

=5 Q=[(s,,{11,7)), (5,,12,8))]




g(s) < rhs(s) (Underconsistent):

Q = [(s,,{11,77), (5,,12,8))]
_




g(s) < rhs(s) (Underconsistent):

Q = [(32,(12,8W,10>)]




g(s) < rhs(s) (Underconsistent):

Q =[(s,,{12,8)), (5,,{14,10))]




g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):

Q =[(s,,{13,9))]




g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):




Overall D* Lite:

1. Initialize all nodes as unexpanded.

2. Bestfirst search until s_,_. is consistent with neighbors and expanded.
3. Move to next best vertex.
4

If any edge costs change:

b. Update source nodes of changed edges.

5. Repeat from 2.

103




Carrying Over the Priority Queue
After a path is found, the priority queue is not empty.

he value on the priority queue is:

{min[ g(s), rhs(s) ]+ h(s,s....), min[g(s), rhs(s)] ?

?“start

When Sqiart is different, the heuristics are different!

104



Carrying Over the Priority Queue

Si.st— Seart- All heuristics lowered by at most h(s .S, .)-

When adding new nodes to the queue, increase total cost by h(s __.s..)-

Increase k= k .+ h(s jast'Sstart)

(min[ g(s), rhs(s) 1+h(s,s__.)+k , min[g(s), rhs(s)] »

m

105



Overall D* Lite:

1.
2
3.
4

=S

Initialize all g(s) = =, rhs(s #s_) =, rhs(s_,) =0,k =0,s, =

Best-first search until s_,_ is locally consistent and expanded.

goal start”

Move so s__. = argmin,, . Suco(ssan) (C(Sg,,:S') + 9(s)).

If any edge costs change:

a. km= Km* h(s Iast’Sstart)'

b. Update rhs and queue position for source nodes of changed edges.

Repeat from 2.

Always sort by { min[ g(s), rhs(s) ] + h(s,s ... t K., min[g(s), rhs(s)] )

106




Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics

Application to Mobile Robotics

107



Overall D* Lite:

1.
2
3.
4

=S

Initialize all g(s) =<, rhs(s #s ) ==, rhs(s ) =0,k =0,s,, =

Best-first search until s_,_ is locally consistent and expanded.

goal start”

Move so s__. = argmin,, . Suco(ssan) (C(Sg,,:S') + 9(s)).

If any edge costs change:

a. km= Km* h(s Iast’Sstart)'

b. Update rhs and queue position for source nodes of changed edges.

Repeat from 2.

Always sort by { min[ g(s), rhs(s) ] + h(s,s ... t K., min[g(s), rhs(s)] )

108




D* Lite Example

e Heuristic: h(A, B) = minimum number of nodes to get from A to B
o h(node, start) ritten in each node

e Bidirectional graph

e Edge eights labeled

© ' 1

Robot Goal
starts node
here

109



D* Lite Example g=c m
1. Initialize B
e all g =rhs = «, except goal

e add goal to queue with key <3,0>
e key modifier=0

g = o0

rhs =0
g= 9= <3.0>
hs = oo rhs

110



D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

111

g=0
rhs =0
(dequeued)



D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

e update rhs(neighbor)
L

queue inconsistent neighbors

‘ 1

g:oo
rhs = «

112

g = o0
rhs =1
<3,2>

g: o0
rhs =10
<12,10>

k =0

m

In this example, the presence of
a key <x,y> indicates that the
node is in the min priority queue.

g=0
rhs =0
(dequeued)



D* Lite Example o 1

2. Plan initial path (A*) 2 dz ueued)
dequeue node 9
update g(node)

update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g:oo g=°°
rhs = « rhs = «

g:oo
rhs =10
<12,10>

113




D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

e update rhs(neighbor)
L

queue inconsistent neighbors

g=1
rhs = 1

(dequeued)

‘ 1

g:oo
rhs = «

g = o0

rhs =2

<3,2>
g = o0
rhs =2
<4,2>

114

Note that this rhs
decreased, and the
node’s_keY changed
accordingly.




D* Lite Example 0 K= 0

2. Plan initial path (A*)
e dequeue node

e update g(node)

[

L

update rhs(neighbor)
queue inconsistent neighbors

‘ 1

g = ©0
= o0 g=2
hs rhs = 2
(dequeued) g= e
rhs = 2

<4 2>

115



D* Lite Example
2. Plan initial path (A*)
dequeue node
update g(node)
update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g = ©0
rhs =3
<3,3>

g=2

rhs = 2

(dequeued)
g = o0
rhs = 2
<4 2>

116

This node’s rhs

as updated, but

the value stayed
the same.

This node’s rhs

as updated, but

the value stayed
the same.




D* Lite Example g=1
2. Plan initial path (A*)

dequeue node

update g(node)

update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g=3 g=

rhs =3 rhs

(dequeued) g= o
rhs = 2

<4 2>

17




D* Lite Example g=1
Found shortest path to goal! S
(edges in blue)

‘ 1

g=3
rhs = 3

g = o0
rhs =2
<4,2>

118




D* Lite Example g=1
3. Robot moves (green) S
e update heuristics for new start node
e maintain queue from before

g = o0
rhs = 2
<4,2>

119




D* Lite Example

4. Obstacle detected (dark gray)
e adjacent edge weights = «
e update k _

120

g = o0
rhs =2
<4,2>




D* Lite Example g= K =1

4. Obstacle detected (dark gray) rhs =
e adjacent edge weights = « <3,1>
e update k

e update rhs of source nodes

1 9=
@~ rhs =0
rhs(goal) = 0,
g=3 g=2 ' alw(agys )
rhs =3 rhs =4
<3,2>
g = o0
rhs =3

<5,3>

121



D* Lite Example

5. Repeat from 2
2. Replan path

g=00

Underconsistent! m

rhs =
(dequeued)

g=2

rhs =4

<3,2>
g:oo
rhs =3

122

Update rhs of
neighbors, but no
values change.




D* Lite Example

2. Replan path

g:oo
rhs =4
(dequeued)

Underconsistent!

123

g = o0
rhs =3
<5,3>




D* Lite Example

2. Replan path

@‘ 1

g=3
rhs = «
<5,3>

g:oo

rhs =4

(dequeued)
g:oo
rhs =10

<12,10>

124




D* Lite Example

2. Replan path

@‘ 1

g == 00
rhs = «
(dequeued)

125




D* Lite Example

2. Replan path

®‘ 1

g == 00
rhs = o
(dequeued)

126

g:oo
rhs =10
<12,10>




D* Lite Example

2. Replan path

127

g=10
rhs = 10
(dequeued)




D* Lite Example

2. Replan path

-
— o g:OO
'hs rhs = 11

<12.11>

This node’s rhs
was updated, but
the value stayed
the same.

128

g=10
rhs = 10
(dequeued)



D* Lite Example

2. Replan path

@‘ 1

g:oo
rhs =

g=11
rhs = 11
(dequeued)

129




D* Lite Example

2. Replan path

@‘ 1

g = o0
rhs =12
<14,12>

g=11
rhs = 11
(dequeued)

130




D* Lite Example
Found new shortest path (blue) g=
from current start (green)
to goal (red)

®‘1

g:oo
rhs =12
<14,12>

131




D* Lite Example

3. Robot moves (green)

e update heuristics for new start node rhs = o

e maintain queue from before

@‘1

g=
rhs =12
<14.,12>

132




D* Lite Example

4. Obstacle moves!

e update edge weights
e update k

133




D* Lite Example
4. Obstacle moves!
e update edge weights
e update k _

e update rhs of source nodes

%) -

g=
rhs = «

Note that this node
was removed from the
queue because it is
now locally consistent

g=11

rhs = «

<14,11>
g=10
rhs =10

134




D* Lite Example

5. Repeat from 2
2. Replan path

135

g=1
rhs =1
(dequeued)




D* Lite Example

2. Replan path

g=1
rhs =1
(dequeued)




D* Lite Example

2. Replan path

137

g=2
rhs = 2
(dequeued)




D* Lite Example o1

Found new shortest path!

g= = g=11
rhs = « rhs = «
<14.11>

Note that we g=2

didn’t dequeue rhs = 2
this node or
update its g 138




D* Lite Example g=1
3. Robot moves S
e update heuristics for new start node
e maintain queue from before

139




D* Lite Example 0
4. Obstacle moves, chasing robot!
e update edge weights
e update k _

140




D* Lite Example

4. Obstacle moves, chasing robot!

e update edge weights
e update k _

e update rhs of source nodes

g=2
rhs = =
<6,2>

141




D* Lite Example g=1
5. Repeat from 2 S
2. Replan path?
e No need to dequeue any nodes
because the smallest key (<6,2>)
is greater than key(start) (<4,1>).

@‘1

g: 00 g:']']

rhs =12 rhs =2

<17,12> <6,11>
g=2
rhs =

<6,2>

142




D* Lite Example

3. Robot moves
e Robot reaches goal: Done!

143

rhs = «
<6,2>




Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics

Application to Mobile Robotics

144



Efficiency

e A* expands each node at most once
e D* Lite (and LPA*) expands each node at most twice
o But will in most cases expand fewer nodes than A*

e A” might performs better if:
o Changes are close to start node
o Large changes to the graph

145



When to use incremental path planning?

-




When to use incremental path planning?

-




When to use incremental path planning?

-

®

.



When to use incremental path planning?

-

ye




When to use incremental path planning?

-

ye




When to use incremental path planning?

-

ye




When to use incremental path planning?

-

ye




When to use incremental path planning?

-

.

.




When to use incremental path planning?

-

o ool

.



When to use incremental path planning?

-

.

.



When to use incremental path planning?

-

.

.



When to use incremental path planning?

-

.

.



When to use incremental path planning?

-

.

.



When to use incremental path planning?

-

.

ye



When to use incremental path planning?

-

o oo

ye



When to use incremental path planning?

-

o ool

ye



When to use incremental path planning?

-

.




When to use incremental path planning?

-

.




When to use incremental path planning?

-

.
.




When to use incremental path planning?

»
o o0 0 fem




When to use incremental path planning?

-




When to use incremental path planning?

-

o o o
-




When to use incremental path planning?

-




When to use incremental path planning?

-




When to use incremental path planning?




When to use incremental path planning?

-
. .




When to use incremental path planning?




When to use incremental path planning?

-

o i

®




When to use incremental path planning?

o




When to use incremental path planning?

. S0 0 e




When to use incremental path planning?

. o o 0 e




Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics
Application to Mobile Robotics

177



Greedy mapping




Greedy mapping




Greedy mapping













Greedy mapping



Greedy mapping



Greedy mapping



Greedy mapping




Greedy mapping















Greedy mapping




Greedy mapping




Greedy mapping




Greedy mapping




Anytime Dynamic A* (AD*)

e Combines the benefits of anytime and
incremental planners

e |n the real world:
o Changing environment (incremental planners)
o Agents need to act upon decisions quickly
(anytime planners)

Ref: Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & hrun, S. (2005,
June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS(pp. 262 -

271).
197



Anytime Planners

e Usually start off by computing a highly suboptimal
solution

O

hen improves the solution over time

e A™ with inconsistent heuristics for example

O

O

Inflated heuristic values give substantial speed-up

Inflated heuristics make the algorithm prefer to keep expanding
paths

Use incrementally less inflated heuristics to approach optimality

198



Anytime Dynamic A* (AD*)

e Starts off by setting a sufficiently high inflation factor
o Generates suboptimal plan quickly
e Decreases inflation factor to approach optimality
o hen changes to edge costs are detected the current solution is

repaired
o If the changes are substantial the inflation factor is increased to generate a new
plan quickly

199



Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics
Application to Mobile Robotics

200



Application to mobile robotics

e How do we go from a complete configuration space to a graph?

This image in the publicdomain. Reference: Lecture given by Michal Cap in 2.166 and

paper currently in review
201



Application to mobile robotics

e How do we go from a complete configuration space to a graph?

Reference: Lecture given by Michal Cap in 2.166 and
paper currently in review

This image in the publicdomain.

202



Holonomic System Nonholonomic System

e No differential constraints e Differential constraints

< B

203



Methods

e Cell decomposition
e Visibility graph
e Sampling-based roadmap construction

204



Cell Decomposition




Cell Decomposition




Cell Decomposition

A

A




Cell Decomposition

A

A




Cell Decomposition

A
*

A




Cell Decomposition

A




Cell Decomposition

A




Cell Decomposition

A




Cell Decomposition

A




Cell Decomposition




Cell Decomposition




Cell Decomposition




Cell Decomposition




Cell Decomposition

\

b




Cell Decomposition

219

Works in environments where
obstacles are 2D polygons
Path is not optimal

Only holonomic systems




Visibility Graph




Visibility Graph




Visibility Graph




Visibility Graph




Visibility Graph




Visibility Graph

Works in environments where
obstacles are 2D polygons
Only holonomic systems
Optimal path

Circular robot

225




Sampling-based Roadmap Construction

Deterministic sampling

Random sampling

£idgy




Sampling-based Roadmap Construction

- ~

227



Connecting Samples

e Steering function used
o Steer(a, b) gives feasible path between samples
o Nonholonomic

e Dubins path
o Shortest path between two points
o Can be constructed of maximum curvature and straight line
segments
m RSR,RSL, LSR, LSL, RLR or LRL

228




Outline

Motivation

Incremental Search

The D* Lite Algorithm

D* Lite Example

When to Use Incremental Path Planning?
Algorithm Extensions and Related Topics
Application to Mobile Robotics

229






Backup



Incremental Path Planning
e Dynamic A* (D*) - Stentz, 1994

o Initial combination of A* and incremental search for mobile robot path planning.
® DynamicsSWSF-FP — Ramalingam and Reps, 1996

o Incremental search technique.
e Lifelong Planning A* (LPA*) — Koenig and Likhachev, 2001

o  Generalizes A* and DynamicsSWSF-FP for indefinite re-planning on finite graph.
e D* Lite — Koenig and Likhachev, 2002

o  Extends LPA* to provide D* functionality for mobile robots.

o  Simpler formulation than D*.

® More recent extensions to D* and D* Lite, including Anytime D* (AD*), Field D*, etc.

® Other methods...

232



D* Algorithm

Function: INSERT (X, h,,,)

if (X) = NEW then k(X) = h,_,
else
if ((X) = OPEN then
k(X) = MIN(K(X), h,,,) ; DELETE(X)
else k(X) = MINCh(X),h_, )
h(x’ = hnrw;’(x) i Rrurr
fX) = KX+ GVALX,R,,,); X0 = fX0 +d,,,,
PUT - STATE(X)

Function: MIN-STATE ()

L1 while X = GET-STATE( )= NULL
L2 ifrX)=R then

L3 h,,, = h0; h(X) = kX)
L4 DELETE(X); INSERTX, h, )
L5 elsereturn X
L6 return NULL

The MIN - VAL function, given below, returns the f{*)
and k(°) values of the state on the OPEN list with minimum
f°) value, that is, (f,_, .k ) -
Function: MIN-VAL ()
L1 X = MIN-STATE( )
L2 if X = NULL then return NO - VAL

L3 else return (f{X), k(X))

ECELEERE

Function: PROCESS-STATE ()

L1
L2
L3
L4
L5
L6
L7
L8
L9

X =

MIN - STATE( )

if X = NULL then return NO - VAL

val

if k

val

= {fX), k(X)) ; k,,, = k(X); DELETE(X)
< h(X) then

for each neighbor ¥ of X:

if k

val

if (Y) = NEW and LESSEQ(COST(Y), val) and

h(X) > h(Y) + c(Y, X) then
b(X) = Y, MX) = h(Y) + (Y, X)
= h(X) then

L10 for each neighbor ¥ of X:

L11
L12
L13
L14

L15else

if (Y) = NEW or
(b(Y) = X and h(Y) = h(X) + c(X, 1)) or
(b(Y) = X and h(Y) > h(X) + c(X, Y)) then
b(Y) = X; INSERT(Y, h(X) + c(X, Y))

L16 for each neighbor ¥ of X:

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28

if (Y) = NEW or
(b(Y) = X and h(Y) = h(X) + c(X, Y)) then
b(Y) = X; INSERT(Y, h(X) + c(X, 1))
else
if B(Y) = X and A(Y) > hi(X) + c(X, Y) and
t(X) = CLOSED then
INSERT(X, h(X))
else
if B(Y) = X and A(X) > h(Y) + (Y, X) and
KY) = CLOSED and
LESS(val, COST(Y)) then
INSERT(Y, h(Y))

L29 return MIN - VAL( )

233

Function: MODIFY-COST (X, Y, ¢,y)

Ll X,V =c,,
L2 if (X) = CLOSED then INSERT(X, h(X))
L3 return MIN - VAL( )

Function: MOVE-ROBOT (S, G)

L1 for each state X in the graph:
HX) = NEW
dcun =0; Rcurr -$
INSERT(G, 0)
val = (0,0)
while #S) = CLOSED and val = NO - VAL
val = PROCESS - STATE( )
if 1(S) = NEW then return NO - PATH
19 R=S
L10 while R=G:
L11 if s(X, ¥) = (X, ¥) for some (X,¥) then
L12 if R.__ =R then

curr

SSEGEER

L13 drnrr - drurr+GVAuR' Rcrrr)+£ ’ Rﬂrrr =R
L14  foreach (X,¥) such that s(X, ¥) = (X, 1):

L15 val = MODIFY-COST(X, Y, s(X, 1))

L16 while LESS(val, COST(R)) and val = NO- VAL
L17 val = PROCESS - STATE( )

LI18 R = b(R)

L19 return GOAL - REACHED



LPA* Algorithm

procedure CalculateKey(s) procedure Main()
{01} return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))]; {17} Initialize ();
procedure Initialize () {18} forever
{02} U = ¢; {19} ComputeShortestI"ath();
{03} forall s € S rhs(s) = g(s) = oco; {20} Wait for changes in edge costs;
; O 21 for all directed edges (u, v) with changed edge costs
{04} Ths(of;start) — O, (= g =
{05} UlInsert(sstart, [P(sstart); 0]); {22} Update the edge cost c(u, v);
procedure UpdateVertex(u) = Dt Vertea (u];
}83% 1; Eu 7 ;Tq)t%ﬁl-{) rhs (TE) ): minS’EPT‘Cd(U) (Q(S’) + C(S,’ 'u,)); From Koenig, Likhachev, & Furcy (2004)
u € Remove(u);
{08} if (g(u) # rhs(u)) U.nsert(u, CalculateKey (u)); 0 1 2 3
procedure ComputeShortestPath() A |22 | o L0
{09} while (U.TopKey()<CalculateKey (s 40a1) OR Ths(sg0a1) # 9(5g0al)) 8:311[7;21
{10} w = U.Pop(); B 1
{11}  if (g(u) > rhs(u)) ] )
{12} g(u) = rhs(u); C |—:>
{13} for all s € succ(u) UpdateVertex(s); D 3
{14} else =
{15} g(u) = oc; E [7:4]
{16} for all s € suce(u) U {u} UpdateVertex(s); F o0 | oo | oo
[7:61] [8:61

Courtesy of Elsevier, Inc., ||1ttp://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
"I_ifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

234


http://www.sciencedirect.com
https://doi.org/10.1016/j.artint.2003.12.001

Review of A*

Use admissible heuristic, h(s) < h*(s), to guide search.

Keep track of total cost/distance from start, g(s).

Order node expansions using priority queue, with priorities f(s) = g(s) + h(s).
Avoid re-expanding nodes by using expanded list.

Better heuristics (how closely h(s) approximates of h*(s)) improve search
speed.

e (Guaranteed to return optimal solution if one exists.

235



RHS Values

e One-step look-ahead on g-values, rhs(s) = 0 if s is beginning node of search,
otherwise:

rhs(s) = min,,

s’ e pred(s) (g(s ) + C(S ’ S))

® Potentially better informed than g-value after changes to search graph.
® Note: term comes from grammar rules used in DynamicsSWSF-FP algorithm, no
other significance.

236



Local Consistency

® Tells us which nodes may need g-values updated in order to find shortest path.
e Node sis locally consistent iff:

g(s) = rhs(s)

e Node sis locally overconsistent iff:
g(s) > rhs(s)

® Node sislocally underconsistent iff:
g(s) < rhs(s)

e Initially, all nodes are locally consistent with g(s) = rhs(s) = c0, with exception of start

node, rhs(sstart) =0andg(s., )=

start

237



Comparison of Incremental Path Planning to A*

Similarities:

e First search expands same nodes in same order as A*, if A* breaks ties in
favor of smaller g-values.

Differences:

e Priority queue ordered using key, k(s):
k(s) = [k,(s); k,(S)]
k,(s) = f(s) = min(g(s),rhs(s)) + h(s)
k,(s) = g(s) = min(g(s),rhs(s))
Lexicographic ordering, k(s) < K'(s) iff:
m o k(s)<k/(s)
m OR (k,(s) =k, '(s) AND ky(s) < k,'(s))
e No expanded list, node re-expansion prevented by local consistency checks.
e Nodes may be expanded twice, depending on algorithm specifics, once when

underconsistent and once when overconsistent.

(@)

O O O

238



Anytime Dynamic A* (AD%)

left: A*
right: A* withe = 2.5

left: D* Lite
right: D* Lite with e = 2.5

left: ARA¥*
right: Anytime Dynamic A*

€ =25 e=1.5 e=1.0 e=25 e=1.5 e=1.0
© American Association for Artificial Intelligence. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair- use/.

Fig: Likhachev, M., Ferguson, D. |., Gordon, G. J., Stentz, A., & hrun, S. (2005, June).
Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS(pp. 262-271).
239


https://ocw.mit.edu/help/faq-fair-use/

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu
https://ocw.mit.edu/terms



