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RRT

Motivation

© Sertac Karaman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Watch the video on YouTube (https://www.youtube.com/watch?v=vW74bC-Ygb4)
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Motivation

After significant offline computation time...
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Motivation RRT

© Sertac Karaman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq—fair—use/.
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Problems

e Changing environmental conditions:

o  Obstacles

o Utility or cost

® Sensor limitations:

o  Partial observability

e Computation time:

o Complete, optimal replanning is slow

o  Stay put or move in wrong direction?




Reuse data from previous search!

)

Incremental Search Methods




Incremental APSP

ﬁ Alg. Mean | Std Comp. | Opt.
‘ ‘ i (CX‘F?QEC)’V 0.0425 | 0.0213 | Yes Yes
(a) (b) (c) (d)
ﬁ RRT 0188 | 012 | Prob. | No
RRT
conmect | 0042 004 | Prob. | No
: ‘%! : E : g PRM 012 | 0.08 | Prob. | Asym.
@ ) © )

Courtesy of Hofmann, Andreas et al. License: cc by-nc-sa.

From Hofmann, Fernandez, Helbert, Smith, & Williams (2015) 33
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Incremental Search

® Perform graph search

® Repeat:
o Execute path/plan

. 1 2 3 4 5 6
o Receive graph changes 4 9
. 13| 12 12]12 18 18] 18
o Update previous search results A 1 Bnnne
7 6 12/11 (10|10
6|5]|5 11 9
4 8
B 3 4 5 6 7 8
cl 3| 2:| 1A - 8
3 2 3 5 [
3 3 4 6 7 (] 1213
4 7 6 5 5 5 101112 16 | 16
Dl5|s|s 716|l6]6]6]6 9 |10 11 13 15
E 6|le6|6|7 7 7 59101 14 | 14 | 15 | 16 | From Koenig,
7 l2|al2 8 8 9 |o9l0] 1 13| 14 16 | Likhachev, &
35 F 8 |s 8 9 9 10 12 14 17 | Furcy (2004)
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Review of Graph Search Problem

Input: graph search problem S =<gr, w, h,s_,_, s

>
start’ ~goal
\\\h(s

N

1 ’Sgoal)

directed graph: gr =<V, E>

edge eighting function: w: s x s — [®
heuristic function: h: s x Sgoal R
start vertex: s__ . € V

goal vertex: Sgoal € 4

W(S1 ’Sgoal)

W(SZ’SgoaI)

Output: simple path P=<s__ s S L O

>
start 2 """ Tgoal
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Review of Graph Search Problem

T~ h(s

N

1 ’Sgoal)

e (. cost-so-far

w(s,,s

© g(s) = g(Spredecessor) + (Spredecessor’ S) 903')

e h: heuristic value, cost-to-go

o f(s)=g(s)+ h(s) W(S5:S46a)

h(sz,sgoal)
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Graph Representations

e Incremental algorithms generalize to any graph (usually non-negative edges).
e Grids used for ease of representation.

4-Connected Graph 8-Connected Graph
A RIAN| P
‘H- o ‘|- -
v e | ¥ | N
Admissible Manhattan Distance max(Ax, Ay)

Heuristic: = Ax + Ay (with unit edge weights)
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Relaxation - Dijkstra’s Algorithm
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Relaxation - Dijkstra’s Algorithm




How to Reuse Previous Search Results?

e Store optimal results:

o shortest paths

o g-values

® Find inconsistencies:

O

local consistency

e Make consistent:

O

relaxations

1 2 3
271]0
2Bl |
3 )

3
3 P

[::3]

(a) (b) (c)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
"Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146. From Koenig,

Likhachev, &
55 Furcy (2004)


http://www.sciencedirect.com
https://doi.org/10.1016/j.artint.2003.12.001

Incremental Search Methods - Examples

e General
o Incremental APSP
o Lifelong Planning A* (LPA¥)
o Dynamics Strictly eakly Superior Function - Fixed Point (DynamicsSWSF-FP)
O

e Mobile Robots
o D*
o D* Lite
e emporal Planning
o Incremental Temporal Consistency (ITC)

e Propositional Satisfiability
o Incremental Unit Propagation
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D* Incremental Path Planning Approach

Heuristic Incremental Efficient Incremental
Search + Search = Path Planning
(e.g. AY) (e.g. DynamicsSWSF-FP) (e.g. LPA*, D* Lite, ...)
Optimal & Fast Fast,

Efficient Replanning Optimal

Replanning
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Initial Search

uninformed search heuristic search

breadth-first search

complete search

incremental search

From Koenig,
Likhachev, &
Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
'|Life|ong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.
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Follow-on Search

uninformed search heuristic search
breadth-first search
=
g
§
o
3
8
DynamicSWSF-FP (with early termination) Lifelong Planning A*
E
2
5
s
3]
. From Koenig,
Likhachev, &
Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
'|Life|ong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.
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A* Reminder

A* is best-first search from start to goal sorted by a cost f(s):

f(s) = g(s) + h(s.s )
f(s) = total node cost
d(s) = path cost to reach vertex from s__.

h(s,sgoal) = heuristic for cost to reach vertex S goal from vertex s

61



A*: Choosing Between Ties

Introduce a new notation: f(s) = < f.(s), f(s)

f(s) =< g(s) + h(s,;s ). 9(s)?
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Successors and Predecessors

Successors of node s: Every node that can be reached from s, Succ(s)
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Successors and Predecessors

Successors of node s: Every node that can be reached from s, Succ(s)
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Successors and Predecessors

Predecessors of vertex s: Every node from which s can be reached, Pred(s)
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Successors and Predecessors

Predecessors of vertex s: Every node from which s can be reached, Pred(s)
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What is D* Lite?

Efficient repeated best-first search through a graph with changing edge weights as
the graph is traversed.

S S — s Sy
\_/ Sart

Can be viewed as replanning through relaxation of path costs.

70



Reformulation: Minimize Recomputation

When the start changes, the path cost from start to s is not preserved.

Case 1: Case 2:




Reformulation: Minimize Recomputation

Reformulate search from goal to start. Path cost from goal to s is preserved.

Case 1: Case 2:




Overall D* Lite:

1.
2
3.
4

Initialize all nodes as unexpanded.

Best-first search until s_,_ is consistent with neighbors and expanded.
Move to next best vertex.

If any edge costs change:

a. Track how heuristics have changed.

b. Update source nodes of changed edges.

Repeat from 2.

73




Overall D* Lite:

1. Initialize all nodes as unexpanded.

Move to next best vertex.

3
4. If any edge costs change:
Most computation

a. Track how heuristics have changed.
b. Update source nodes of changed edges.

5. Repeat from 2.
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Overall D* Lite:

Initialize all nodes as unexpanded.

1
2. Bestfirst search until s_,_. is consistent with neighbors and expanded.
3

Move to next best vertex.

‘4. If any edge costs change: 54/'\

a. Track how heuristics have changed. Incremental component

b. Update source nodes of changed edges.

5. Repeat from 2.
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Overall D* Lite:

Initialize all nodes as unexpanded.

1
2. Bestfirst search until s_,_. is consistent with neighbors and expanded.

________________________________________________

4. If any edge costs change:
a. Track how heuristics have changed.
b. Update source nodes of changed edges.

5. Repeat from 2.
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Extracting a Path Given Path Cost

Move from s__. to the successor which gives s__, the lowest path cost.

Sstart (_ argmlns’ € Succ(sstart) (C(Sstart’s,) + g(S,))




Overall D* Lite:

1. Initialize all nodes as unexpanded.

3. Move to next best vertex.
4. If any edge costs change:

a. Track how heuristics have changed.

________________________________________________________________________

5. Repeat from 2.
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Handling Weight Changes Locally

Self-consistent graph:

9(S) = Min, _ g0 (9(S) *+ €(5.8))

May no longer be true when edge weights change!
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Handling Weight Changes Locally

Changes propagate to predecessors.
For efficient search, update lowest cost nodes first.

=> Use a priority queue like A*. Update nodes until the goal is first expanded.
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Handling Weight Changes Locally

Store an additional value;

rhs(s) = Ming _ g0 (9(S) + €(8,8)

Local inconsistency: rhs(s) # g(s)




Handling Weight Changes Locally

Store an additional value;

rhs(s) = Ming _ g0 (9(S) + €(8,8)

Local inconsistency rhs(s) # g(s)




Local Inconsistencies

Signal recomputation is necessary for node and predecessors

1. Locally overconsistent:

g(s) > rhs(s)

2. Locally underconsistent:

g(s) <rhs(s)
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Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.
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Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.
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Updating and Expanding Nodes

Update by recomputing rhs and placing the node on the priority queue if locally
inconsistent.

® Q=[..,s,..]
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Updating and Expanding Nodes

Expand by taking it off the priority queue and changing g. Expand in order of total
cost:

(min[ g(s), rhs(s) 1+h(s,s_. ), min[g(s), rhs(s)] >




Updating and Expanding Nodes

Expand by taking it off the priority queue and changing g. Expand in order of total
cost:

(min[ g(s), rhs(s) 1+h(s,s_. ), min[g(s), rhs(s)] >

Q=1.]
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Updating and Expanding Nodes

Why not recompute g(s) at the same time as rhs(s)?

- Make sure that we have updated all successors that could lower the total cost

f(s) first.
=> s can be updated multiple times before expansion, so rhs(s) can change on
the queue.
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g(s) > rhs(s) (Overconsistent):

New path cost rhs(s) is better than the old path cost g(s).

Immediately update g(s) to rhs(s) and propagate to all predecessors.

=> Set g(s) =rhs(s)
=> Update all predecessors of s

Vertex is now locally consistent and will remain that way

90



g(s) < rhs(s) (Underconsistent):

Old path cost g(s) is better than new path cost rhs(s).
Delay vertex expansion and propagate to all predecessors.

=> Setg(s) =«
=> Update all predecessors of s and s itself

Vertex is now locally consistent or locally overconsistent. It will remain on the
queue until rhs(s) is the next best cost.

91



g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):

Assume after update:




g(s) < rhs(s) (Underconsistent):

Assume after update:




g(s) < rhs(s) (Underconsistent):

=5 Q=[(s,,{11,7)), (5,,12,8))]




g(s) < rhs(s) (Underconsistent):

Q = [(s,,{11,77), (5,,12,8))]
_




g(s) < rhs(s) (Underconsistent):

Q = [(32,(12,8W,10>)]




g(s) < rhs(s) (Underconsistent):

Q =[(s,,{12,8)), (5,,{14,10))]




g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):

Q =[(s,,{13,9))]




g(s) < rhs(s) (Underconsistent):




g(s) < rhs(s) (Underconsistent):




Overall D* Lite:

1. Initialize all nodes as unexpanded.

2. Bestfirst search until s_,_. is consistent with neighbors and expanded.
3. Move to next best vertex.
4

If any edge costs change:

b. Update source nodes of changed edges.

5. Repeat from 2.
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Carrying Over the Priority Queue
After a path is found, the priority queue is not empty.

he value on the priority queue is:

{min[ g(s), rhs(s) ]+ h(s,s....), min[g(s), rhs(s)] ?

?“start

When Sqiart is different, the heuristics are different!

104



Carrying Over the Priority Queue

Si.st— Seart- All heuristics lowered by at most h(s .S, .)-

When adding new nodes to the queue, increase total cost by h(s __.s..)-

Increase k= k .+ h(s jast'Sstart)

(min[ g(s), rhs(s) 1+h(s,s__.)+k , min[g(s), rhs(s)] »

m

105



Overall D* Lite:

1.
2
3.
4

=S

Initialize all g(s) = =, rhs(s #s_) =, rhs(s_,) =0,k =0,s, =

Best-first search until s_,_ is locally consistent and expanded.

goal start”

Move so s__. = argmin,, . Suco(ssan) (C(Sg,,:S') + 9(s)).

If any edge costs change:

a. km= Km* h(s Iast’Sstart)'

b. Update rhs and queue position for source nodes of changed edges.

Repeat from 2.

Always sort by { min[ g(s), rhs(s) ] + h(s,s ... t K., min[g(s), rhs(s)] )
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Overall D* Lite:

1.
2
3.
4

=S

Initialize all g(s) =<, rhs(s #s ) ==, rhs(s ) =0,k =0,s,, =

Best-first search until s_,_ is locally consistent and expanded.

goal start”

Move so s__. = argmin,, . Suco(ssan) (C(Sg,,:S') + 9(s)).

If any edge costs change:

a. km= Km* h(s Iast’Sstart)'

b. Update rhs and queue position for source nodes of changed edges.

Repeat from 2.

Always sort by { min[ g(s), rhs(s) ] + h(s,s ... t K., min[g(s), rhs(s)] )
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D* Lite Example

e Heuristic: h(A, B) = minimum number of nodes to get from A to B
o h(node, start) ritten in each node

e Bidirectional graph

e Edge eights labeled

© ' 1

Robot Goal
starts node
here

109



D* Lite Example g=c m
1. Initialize B
e all g =rhs = «, except goal

e add goal to queue with key <3,0>
e key modifier=0

g = o0

rhs =0
g= 9= <3.0>
hs = oo rhs

110



D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

111

g=0
rhs =0
(dequeued)



D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

e update rhs(neighbor)
L

queue inconsistent neighbors

‘ 1

g:oo
rhs = «

112

g = o0
rhs =1
<3,2>

g: o0
rhs =10
<12,10>

k =0

m

In this example, the presence of
a key <x,y> indicates that the
node is in the min priority queue.

g=0
rhs =0
(dequeued)



D* Lite Example o 1

2. Plan initial path (A*) 2 dz ueued)
dequeue node 9
update g(node)

update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g:oo g=°°
rhs = « rhs = «

g:oo
rhs =10
<12,10>
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D* Lite Example
2. Plan initial path (A*)

e dequeue node

e update g(node)

e update rhs(neighbor)
L

queue inconsistent neighbors

g=1
rhs = 1

(dequeued)

‘ 1

g:oo
rhs = «

g = o0

rhs =2

<3,2>
g = o0
rhs =2
<4,2>

114

Note that this rhs
decreased, and the
node’s_keY changed
accordingly.




D* Lite Example 0 K= 0

2. Plan initial path (A*)
e dequeue node

e update g(node)

[

L

update rhs(neighbor)
queue inconsistent neighbors

‘ 1

g = ©0
= o0 g=2
hs rhs = 2
(dequeued) g= e
rhs = 2

<4 2>

115



D* Lite Example
2. Plan initial path (A*)
dequeue node
update g(node)
update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g = ©0
rhs =3
<3,3>

g=2

rhs = 2

(dequeued)
g = o0
rhs = 2
<4 2>

116

This node’s rhs

as updated, but

the value stayed
the same.

This node’s rhs

as updated, but

the value stayed
the same.




D* Lite Example g=1
2. Plan initial path (A*)

dequeue node

update g(node)

update rhs(neighbor)

queue inconsistent neighbors

‘ 1

g=3 g=

rhs =3 rhs

(dequeued) g= o
rhs = 2

<4 2>

17




D* Lite Example g=1
Found shortest path to goal! S
(edges in blue)

‘ 1

g=3
rhs = 3

g = o0
rhs =2
<4,2>

118




D* Lite Example g=1
3. Robot moves (green) S
e update heuristics for new start node
e maintain queue from before

g = o0
rhs = 2
<4,2>

119




D* Lite Example

4. Obstacle detected (dark gray)
e adjacent edge weights = «
e update k _

120

g = o0
rhs =2
<4,2>




D* Lite Example g= K =1

4. Obstacle detected (dark gray) rhs =
e adjacent edge weights = « <3,1>
e update k

e update rhs of source nodes

1 9=
@~ rhs =0
rhs(goal) = 0,
g=3 g=2 ' alw(agys )
rhs =3 rhs =4
<3,2>
g = o0
rhs =3

<5,3>

121



D* Lite Example

5. Repeat from 2
2. Replan path

g=00

Underconsistent! m

rhs =
(dequeued)

g=2

rhs =4

<3,2>
g:oo
rhs =3

122

Update rhs of
neighbors, but no
values change.




D* Lite Example

2. Replan path

g:oo
rhs =4
(dequeued)

Underconsistent!

123

g = o0
rhs =3
<5,3>




D* Lite Example

2. Replan path

@‘ 1

g=3
rhs = «
<5,3>

g:oo

rhs =4

(dequeued)
g:oo
rhs =10

<12,10>
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D* Lite Example

2. Replan path

@‘ 1

g == 00
rhs = «
(dequeued)
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D* Lite Example

2. Replan path

®‘ 1

g == 00
rhs = o
(dequeued)

126

g:oo
rhs =10
<12,10>




D* Lite Example

2. Replan path

127

g=10
rhs = 10
(dequeued)




D* Lite Example

2. Replan path

-
— o g:OO
'hs rhs = 11

<12.11>

This node’s rhs
was updated, but
the value stayed
the same.

128

g=10
rhs = 10
(dequeued)



D* Lite Example

2. Replan path

@‘ 1

g:oo
rhs =

g=11
rhs = 11
(dequeued)
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D* Lite Example

2. Replan path

@‘ 1

g = o0
rhs =12
<14,12>

g=11
rhs = 11
(dequeued)

130




D* Lite Example
Found new shortest path (blue) g=
from current start (green)
to goal (red)

®‘1

g:oo
rhs =12
<14,12>

131




D* Lite Example

3. Robot moves (green)

e update heuristics for new start node rhs = o

e maintain queue from before

@‘1

g=
rhs =12
<14.,12>

132




D* Lite Example

4. Obstacle moves!

e update edge weights
e update k

133




D* Lite Example
4. Obstacle moves!
e update edge weights
e update k _

e update rhs of source nodes

%) -

g=
rhs = «

Note that this node
was removed from the
queue because it is
now locally consistent

g=11

rhs = «

<14,11>
g=10
rhs =10

134




D* Lite Example

5. Repeat from 2
2. Replan path

135

g=1
rhs =1
(dequeued)




D* Lite Example

2. Replan path

g=1
rhs =1
(dequeued)




D* Lite Example

2. Replan path

137

g=2
rhs = 2
(dequeued)




D* Lite Example o1

Found new shortest path!

g= = g=11
rhs = « rhs = «
<14.11>

Note that we g=2

didn’t dequeue rhs = 2
this node or
update its g 138




D* Lite Example g=1
3. Robot moves S
e update heuristics for new start node
e maintain queue from before

139




D* Lite Example 0
4. Obstacle moves, chasing robot!
e update edge weights
e update k _

140




D* Lite Example

4. Obstacle moves, chasing robot!

e update edge weights
e update k _

e update rhs of source nodes

g=2
rhs = =
<6,2>

141




D* Lite Example g=1
5. Repeat from 2 S
2. Replan path?
e No need to dequeue any nodes
because the smallest key (<6,2>)
is greater than key(start) (<4,1>).

@‘1

g: 00 g:']']

rhs =12 rhs =2

<17,12> <6,11>
g=2
rhs =

<6,2>

142




D* Lite Example

3. Robot moves
e Robot reaches goal: Done!

143

rhs = «
<6,2>
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Efficiency

e A* expands each node at most once
e D* Lite (and LPA*) expands each node at most twice
o But will in most cases expand fewer nodes than A*

e A” might performs better if:
o Changes are close to start node
o Large changes to the graph
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When to use incremental path planning?
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Greedy mapping
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Anytime Dynamic A* (AD*)

e Combines the benefits of anytime and
incremental planners

e |n the real world:
o Changing environment (incremental planners)
o Agents need to act upon decisions quickly
(anytime planners)

Ref: Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & hrun, S. (2005,
June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS(pp. 262 -

271).
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Anytime Planners

e Usually start off by computing a highly suboptimal
solution

O

hen improves the solution over time

e A™ with inconsistent heuristics for example

O

O

Inflated heuristic values give substantial speed-up

Inflated heuristics make the algorithm prefer to keep expanding
paths

Use incrementally less inflated heuristics to approach optimality
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Anytime Dynamic A* (AD*)

e Starts off by setting a sufficiently high inflation factor
o Generates suboptimal plan quickly
e Decreases inflation factor to approach optimality
o hen changes to edge costs are detected the current solution is

repaired
o If the changes are substantial the inflation factor is increased to generate a new
plan quickly
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Application to mobile robotics

e How do we go from a complete configuration space to a graph?

This image in the publicdomain. Reference: Lecture given by Michal Cap in 2.166 and

paper currently in review
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Application to mobile robotics

e How do we go from a complete configuration space to a graph?

Reference: Lecture given by Michal Cap in 2.166 and
paper currently in review

This image in the publicdomain.
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Holonomic System Nonholonomic System

e No differential constraints e Differential constraints

< B
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Methods

e Cell decomposition
e Visibility graph
e Sampling-based roadmap construction
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Cell Decomposition
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Cell Decomposition
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Works in environments where
obstacles are 2D polygons
Path is not optimal

Only holonomic systems
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Visibility Graph

Works in environments where
obstacles are 2D polygons
Only holonomic systems
Optimal path

Circular robot
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Sampling-based Roadmap Construction

Deterministic sampling

Random sampling

£idgy




Sampling-based Roadmap Construction

- ~
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Connecting Samples

e Steering function used
o Steer(a, b) gives feasible path between samples
o Nonholonomic

e Dubins path
o Shortest path between two points
o Can be constructed of maximum curvature and straight line
segments
m RSR,RSL, LSR, LSL, RLR or LRL
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Incremental Path Planning
e Dynamic A* (D*) - Stentz, 1994

o Initial combination of A* and incremental search for mobile robot path planning.
® DynamicsSWSF-FP — Ramalingam and Reps, 1996

o Incremental search technique.
e Lifelong Planning A* (LPA*) — Koenig and Likhachev, 2001

o  Generalizes A* and DynamicsSWSF-FP for indefinite re-planning on finite graph.
e D* Lite — Koenig and Likhachev, 2002

o  Extends LPA* to provide D* functionality for mobile robots.

o  Simpler formulation than D*.

® More recent extensions to D* and D* Lite, including Anytime D* (AD*), Field D*, etc.

® Other methods...
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D* Algorithm

Function: INSERT (X, h,,,)

if (X) = NEW then k(X) = h,_,
else
if ((X) = OPEN then
k(X) = MIN(K(X), h,,,) ; DELETE(X)
else k(X) = MINCh(X),h_, )
h(x’ = hnrw;’(x) i Rrurr
fX) = KX+ GVALX,R,,,); X0 = fX0 +d,,,,
PUT - STATE(X)

Function: MIN-STATE ()

L1 while X = GET-STATE( )= NULL
L2 ifrX)=R then

L3 h,,, = h0; h(X) = kX)
L4 DELETE(X); INSERTX, h, )
L5 elsereturn X
L6 return NULL

The MIN - VAL function, given below, returns the f{*)
and k(°) values of the state on the OPEN list with minimum
f°) value, that is, (f,_, .k ) -
Function: MIN-VAL ()
L1 X = MIN-STATE( )
L2 if X = NULL then return NO - VAL

L3 else return (f{X), k(X))

ECELEERE

Function: PROCESS-STATE ()

L1
L2
L3
L4
L5
L6
L7
L8
L9

X =

MIN - STATE( )

if X = NULL then return NO - VAL

val

if k

val

= {fX), k(X)) ; k,,, = k(X); DELETE(X)
< h(X) then

for each neighbor ¥ of X:

if k

val

if (Y) = NEW and LESSEQ(COST(Y), val) and

h(X) > h(Y) + c(Y, X) then
b(X) = Y, MX) = h(Y) + (Y, X)
= h(X) then

L10 for each neighbor ¥ of X:

L11
L12
L13
L14

L15else

if (Y) = NEW or
(b(Y) = X and h(Y) = h(X) + c(X, 1)) or
(b(Y) = X and h(Y) > h(X) + c(X, Y)) then
b(Y) = X; INSERT(Y, h(X) + c(X, Y))

L16 for each neighbor ¥ of X:

L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28

if (Y) = NEW or
(b(Y) = X and h(Y) = h(X) + c(X, Y)) then
b(Y) = X; INSERT(Y, h(X) + c(X, 1))
else
if B(Y) = X and A(Y) > hi(X) + c(X, Y) and
t(X) = CLOSED then
INSERT(X, h(X))
else
if B(Y) = X and A(X) > h(Y) + (Y, X) and
KY) = CLOSED and
LESS(val, COST(Y)) then
INSERT(Y, h(Y))

L29 return MIN - VAL( )
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Function: MODIFY-COST (X, Y, ¢,y)

Ll X,V =c,,
L2 if (X) = CLOSED then INSERT(X, h(X))
L3 return MIN - VAL( )

Function: MOVE-ROBOT (S, G)

L1 for each state X in the graph:
HX) = NEW
dcun =0; Rcurr -$
INSERT(G, 0)
val = (0,0)
while #S) = CLOSED and val = NO - VAL
val = PROCESS - STATE( )
if 1(S) = NEW then return NO - PATH
19 R=S
L10 while R=G:
L11 if s(X, ¥) = (X, ¥) for some (X,¥) then
L12 if R.__ =R then

curr

SSEGEER

L13 drnrr - drurr+GVAuR' Rcrrr)+£ ’ Rﬂrrr =R
L14  foreach (X,¥) such that s(X, ¥) = (X, 1):

L15 val = MODIFY-COST(X, Y, s(X, 1))

L16 while LESS(val, COST(R)) and val = NO- VAL
L17 val = PROCESS - STATE( )

LI18 R = b(R)

L19 return GOAL - REACHED



LPA* Algorithm

procedure CalculateKey(s) procedure Main()
{01} return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))]; {17} Initialize ();
procedure Initialize () {18} forever
{02} U = ¢; {19} ComputeShortestI"ath();
{03} forall s € S rhs(s) = g(s) = oco; {20} Wait for changes in edge costs;
; O 21 for all directed edges (u, v) with changed edge costs
{04} Ths(of;start) — O, (= g =
{05} UlInsert(sstart, [P(sstart); 0]); {22} Update the edge cost c(u, v);
procedure UpdateVertex(u) = Dt Vertea (u];
}83% 1; Eu 7 ;Tq)t%ﬁl-{) rhs (TE) ): minS’EPT‘Cd(U) (Q(S’) + C(S,’ 'u,)); From Koenig, Likhachev, & Furcy (2004)
u € Remove(u);
{08} if (g(u) # rhs(u)) U.nsert(u, CalculateKey (u)); 0 1 2 3
procedure ComputeShortestPath() A |22 | o L0
{09} while (U.TopKey()<CalculateKey (s 40a1) OR Ths(sg0a1) # 9(5g0al)) 8:311[7;21
{10} w = U.Pop(); B 1
{11}  if (g(u) > rhs(u)) ] )
{12} g(u) = rhs(u); C |—:>
{13} for all s € succ(u) UpdateVertex(s); D 3
{14} else =
{15} g(u) = oc; E [7:4]
{16} for all s € suce(u) U {u} UpdateVertex(s); F o0 | oo | oo
[7:61] [8:61

Courtesy of Elsevier, Inc., ||1ttp://www.sciencedirect.com. Used with permission.
Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.
"I_ifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.
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Review of A*

Use admissible heuristic, h(s) < h*(s), to guide search.

Keep track of total cost/distance from start, g(s).

Order node expansions using priority queue, with priorities f(s) = g(s) + h(s).
Avoid re-expanding nodes by using expanded list.

Better heuristics (how closely h(s) approximates of h*(s)) improve search
speed.

e (Guaranteed to return optimal solution if one exists.
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RHS Values

e One-step look-ahead on g-values, rhs(s) = 0 if s is beginning node of search,
otherwise:

rhs(s) = min,,

s’ e pred(s) (g(s ) + C(S ’ S))

® Potentially better informed than g-value after changes to search graph.
® Note: term comes from grammar rules used in DynamicsSWSF-FP algorithm, no
other significance.
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Local Consistency

® Tells us which nodes may need g-values updated in order to find shortest path.
e Node sis locally consistent iff:

g(s) = rhs(s)

e Node sis locally overconsistent iff:
g(s) > rhs(s)

® Node sislocally underconsistent iff:
g(s) < rhs(s)

e Initially, all nodes are locally consistent with g(s) = rhs(s) = c0, with exception of start

node, rhs(sstart) =0andg(s., )=

start
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Comparison of Incremental Path Planning to A*

Similarities:

e First search expands same nodes in same order as A*, if A* breaks ties in
favor of smaller g-values.

Differences:

e Priority queue ordered using key, k(s):
k(s) = [k,(s); k,(S)]
k,(s) = f(s) = min(g(s),rhs(s)) + h(s)
k,(s) = g(s) = min(g(s),rhs(s))
Lexicographic ordering, k(s) < K'(s) iff:
m o k(s)<k/(s)
m OR (k,(s) =k, '(s) AND ky(s) < k,'(s))
e No expanded list, node re-expansion prevented by local consistency checks.
e Nodes may be expanded twice, depending on algorithm specifics, once when

underconsistent and once when overconsistent.

(@)

O O O
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Anytime Dynamic A* (AD%)

left: A*
right: A* withe = 2.5

left: D* Lite
right: D* Lite with e = 2.5

left: ARA¥*
right: Anytime Dynamic A*

€ =25 e=1.5 e=1.0 e=25 e=1.5 e=1.0
© American Association for Artificial Intelligence. All rights reserved.
This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair- use/.

Fig: Likhachev, M., Ferguson, D. |., Gordon, G. J., Stentz, A., & hrun, S. (2005, June).
Anytime Dynamic A*: An Anytime, Replanning Algorithm. In ICAPS(pp. 262-271).
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