Incremental Path Planning

April 4, 2016

Joe Leavitt, Ben Ayton, Jessica Noss, Erlend Harbitz, Jake Barnwell & Sam Pinto

References

- Koenig, S., & Likhachev, M. (2002, July). D* Lite. In AAAI/IAAI (pp. 476-483).
- Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong planning A*. Artificial Intelligence, 155(1), 93-146.
- Stentz, A. (1994, May). Optimal and efficient path planning for partially-known environments. In *Proceedings of the IEEE International Conference on Robotics and Automation*.
- Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & Thrun, S. (2005, June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In *ICAPS* (pp. 262-271).
- Hofmann, A., Fernandez, E., Helbert, J., Smith, S., & Williams, B. (2015).
 Reactive Integrated Motion Planning and Execution. In *Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence*.

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Replan

Replan

Replan

Replan

Change detected!

Replan

Environmental Change

Change detected!

Replan

Change detected!

Replan

RRT

© Sertac Karaman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Watch the video on YouTube (https://www.youtube.com/watch?v=vW74bC-Ygb4)

After significant offline computation time...

RRT*

© Sertac Karaman. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Problems

- Changing environmental conditions:
 - Obstacles
 - Utility or cost

- Sensor limitations:
 - Partial observability

- Computation time:
 - Complete, optimal replanning is slow
 - Stay put or move in wrong direction?

Reuse data from previous search!

Incremental Search Methods

Incremental APSP

Alg.	Mean	Std	Comp.	Opt.
Chekhov (APSP)	0.0425	0.0213	Yes	Yes
RRT	0.188	0.12	Prob.	No
RRT connect	0.042	0.04	Prob.	No
PRM	0.12	0.08	Prob.	Asym.

Courtesy of Hofmann, Andreas et al. License: cc by-nc-sa.

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Incremental Search

- Perform graph search
- Repeat:
 - Execute path/plan
 - Receive graph changes
 - Update previous search results

Review of Graph Search Problem

Input: graph search problem $S = \langle gr, w, h, s_{start}, s_{goal} \rangle$

- directed graph: gr = <V, E>
- edge eighting function: $w: s \times s \rightarrow \mathbb{R}$
- heuristic function: $h: s \times s_{goal} \to \mathbb{R}$
- start vertex: $s_{start} \in V$
- goal vertex: $s_{goal} \in V$

Output: simple path $P = \langle s_{start}, s_2, ..., s_{goal} \rangle$

Review of Graph Search Problem

g: cost-so-far

$$\circ$$
 $g(s) = g(s_{predecessor}) + (s_{predecessor}, s)$

- h: heuristic value, cost-to-go
- f(s) = g(s) + h(s)

Graph Representations

- Incremental algorithms generalize to any graph (usually non-negative edges).
- Grids used for ease of representation.

8-Connected Graph

Admissible Heuristic:

Manhattan Distance = $\Delta x + \Delta y$

 $max(\Delta x, \Delta y)$ (with unit edge weights)

How to Reuse Previous Search Results?

- Store optimal results:
 - shortest paths
 - g-values
- Find inconsistencies:
 - local consistency
- Make consistent:
 - relaxations

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy.

"Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146. From Koe

From Koenig, Likhachev, & Furcy (2004)

Incremental Search Methods - Examples

General

- Incremental APSP
- Lifelong Planning A* (LPA*)
- Dynamics Strictly eakly Superior Function Fixed Point (DynamicsSWSF-FP)
- 0 ...

Mobile Robots

- o **D***
- o D* Lite

emporal Planning

- Incremental Temporal Consistency (ITC)
- Propositional Satisfiability
 - Incremental Unit Propagation

D* Incremental Path Planning Approach

Heuristic Search (e.g. A*)

+

Incremental
Search
(e.g. DynamicsSWSF-FP)

Efficient Incremental
Path Planning
(e.g. LPA*, D* Lite, ...)

Optimal & Efficient

Fast Replanning Fast, Optimal Replanning

Initial Search

From Koenig, Likhachev, & Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy. "Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

Follow-on Search

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy. "Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

A* Reminder

A* is best-first search from start to goal sorted by a cost f(s):

$$f(s) = g(s) + h(s,s_{goal})$$

f(s) = total node cost

g(s) = path cost to reach vertex from s_{start}

 $h(s,s_{goal})$ = heuristic for cost to reach vertex s_{goal} from vertex s

$$f(s) = \langle g(s) + h(s,s_{goal}), g(s) \rangle$$

Successors of node s: Every node that can be reached from s, Succ(s)

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

Successors of node s: Every node that can be reached from s, Succ(s)

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

Successors of node s: Every node that can be reached from s, Succ(s)

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

Successors of node s: Every node that can be reached from s, Succ(s)

Predecessors of vertex s: Every node from which s can be reached, Pred(s)

What is D* Lite?

Efficient <u>repeated best-first search</u> through a graph with <u>changing edge weights</u> as the graph is <u>traversed</u>.

Can be viewed as replanning through relaxation of path costs.

Reformulation: Minimize Recomputation

When the start changes, the path cost from start to s is not preserved.

Reformulation: Minimize Recomputation

Reformulate search from goal to start. Path cost from goal to s is preserved.

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

75

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

Extracting a Path Given Path Cost

Move from s_{start} to the successor which gives s_{start} the lowest path cost.

$$s_{start} \leftarrow argmin_{s' \in Succ(s^{start})} (c(s_{start}, s') + g(s'))$$

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

Self-consistent graph:

$$g(s) = \min_{s' \in Succ(s)} (g(s') + c(s,s'))$$

May no longer be true when edge weights change!

Changes propagate to predecessors.

For efficient search, update lowest cost nodes first.

→ Use a priority queue like A*. Update nodes until the goal is first expanded.

Store an additional value:

$$\mathsf{rhs}(\mathsf{s}) = \mathsf{min}_{\mathsf{s}' \in \mathsf{Succ}(\mathsf{s})} \left(\mathsf{g}(\mathsf{s}') + \mathsf{c}(\mathsf{s},\mathsf{s}') \right)$$

Local inconsistency: $rhs(s) \neq g(s)$

Store an additional value:

$$\mathsf{rhs}(\mathsf{s}) = \mathsf{min}_{\mathsf{s}' \in \mathsf{Succ}(\mathsf{s})} \left(\mathsf{g}(\mathsf{s}') + \mathsf{c}(\mathsf{s},\mathsf{s}') \right)$$

Local inconsistency $rhs(s) \neq g(s)$

Local Inconsistencies

Signal recomputation is necessary for <u>node and predecessors</u>

1. Locally overconsistent:

2. Locally underconsistent:

<u>Update</u> by recomputing rhs and placing the node on the priority queue if <u>locally</u> <u>inconsistent</u>.

<u>Update</u> by recomputing rhs and placing the node on the priority queue if <u>locally</u> <u>inconsistent</u>.

<u>Update</u> by recomputing rhs and placing the node on the priority queue if <u>locally</u> <u>inconsistent</u>.

Expand by taking it off the priority queue and changing g. Expand in order of total cost:

$$\langle \min[g(s), rhs(s)] + h(s,s_{start}), \min[g(s), rhs(s)] \rangle$$

Expand by taking it off the priority queue and changing g. Expand in order of total cost:

$$\langle \min[g(s), rhs(s)] + h(s,s_{start}), \min[g(s), rhs(s)] \rangle$$

$$Q = [...]$$

Why not recompute g(s) at the same time as rhs(s)?

- → Make sure that we have updated all successors that could lower the total cost f(s) first.
- → s can be updated multiple times before expansion, so rhs(s) can change on the queue.

g(s) > rhs(s) (Overconsistent):

New path cost rhs(s) is better than the old path cost g(s).

Immediately update g(s) to rhs(s) and propagate to all predecessors.

- \rightarrow Set g(s) = rhs(s)
- → Update all predecessors of s

Vertex is now locally consistent and will remain that way.

Old path cost g(s) is better than new path cost rhs(s).

Delay vertex expansion and propagate to all predecessors.

- \rightarrow Set g(s) = ∞
- → Update all predecessors of s and s itself

Vertex is now locally consistent or locally overconsistent. It will remain on the queue until rhs(s) is the next best cost.

Assume after update:

Assume after update:

- 1. Initialize all nodes as unexpanded.
- 2. Best-first search until s_{start} is consistent with neighbors and expanded.
- 3. Move to next best vertex.
- 4. If any edge costs change:
 - a. Track how heuristics have changed.
 - b. Update source nodes of changed edges.
- 5. Repeat from 2.

Carrying Over the Priority Queue

After a path is found, the priority queue is not empty.

he value on the priority queue is:

$$\langle \min[g(s), rhs(s)] + h(s,s_{start}), \min[g(s), rhs(s)] \rangle$$

When s_{start} is different, the <u>heuristics are different!</u>

Carrying Over the Priority Queue

 $s_{last} \rightarrow s_{start}$: All heuristics lowered by at most h(s_{last} , s_{start}).

When adding new nodes to the queue, increase total cost by h(s_{last},s_{start}).

Increase $k_m = k_m + h(s_{last}, s_{start})$:

 $\langle \min[g(s), rhs(s)] + h(s,s_{start}) + k_m, \min[g(s), rhs(s)] \rangle$

- 1. Initialize all $g(s) = \infty$, $rhs(s \neq s_{goal}) = \infty$, $rhs(s_{goal}) = 0$, $k_m = 0$, $s_{last} = s_{start}$.
- 2. Best-first search until s_{start} is locally consistent and expanded.
- 3. Move so $s_{\text{start}} = \operatorname{argmin}_{s' \in \operatorname{Succ}(s^{\text{start}})} (c(s_{\text{start}}, s') + g(s')).$
- 4. If any edge costs change:
 - a. $k_m = k_m + h(s_{last}, s_{start})$.
 - b. Update rhs and queue position for source nodes of changed edges.
- 5. Repeat from 2.

Always sort by $\langle \min[g(s), rhs(s)] + h(s,s_{start}) + k_m, \min[g(s), rhs(s)] \rangle$

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

- 1. Initialize all $g(s) = \infty$, $rhs(s \neq s_{goal}) = \infty$, $rhs(s_{goal}) = 0$, $k_m = 0$, $s_{last} = s_{start}$.
- 2. Best-first search until s_{start} is locally consistent and expanded.
- 3. Move so $s_{\text{start}} = argmin_{s' \in Succ(s^{\text{start}})} (c(s_{\text{start}}, s') + g(s')).$
- 4. If any edge costs change:
 - a. $k_m = k_m + h(s_{last}, s_{start})$.
 - b. Update rhs and queue position for source nodes of changed edges.
- 5. Repeat from 2.

Always sort by $\langle \min[g(s), rhs(s)] + h(s,s_{start}) + k_m, \min[g(s), rhs(s)] \rangle$

Heuristic: h(A, B) = minimum number of nodes to get from A to B
 h(node, start) ritten in each node

$k_{m} = 0$

1. Initialize

- all g = rhs = ∞, except goal
- add goal to queue with key <3,0>

key modifier = 0

$$g = \infty$$

rhs = 0
<3,0>

rhs = ∞

10

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)

queue inconsistent neighbors

= ∞ rhs = ∞ $rhs = \infty$

In this example, the presence of a key <x,y> indicates that the node is in the min priority queue.

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)
 - queue inconsistent neighbors

g = 1 rhs = 1 (dequeued)

10

 $k_m = 0$

$$g = 0$$
 $rhs = 0$

$$g = \infty$$

rhs = 10
<12,10>

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)
 - queue inconsistent neighbors

10

g = ∞ rhs = 2 <4,2>

Note that this rhs decreased, and the node's key changed accordingly.

g = 1rhs = 1

10

 $k_{m} = 0$

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)

queue inconsistent neighbors

g = 0rhs = 0

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)
 - queue inconsistent neighbors

This node's rhs as updated, but the value stayed rhs = 1the same.

rhs = 2

g = 1

This node's rhs as updated, but the value stayed the same.

10

- 2. Plan initial path (A*)
 - dequeue node
 - update g(node)
 - update rhs(neighbor)
 - queue inconsistent neighbors

$$g = 1$$
 rhs = 1

10

rhs = 2

Found shortest path to goal! (edges in blue)

$$g = 1$$
 rhs = 1

<4,2>

g = 1 rhs = 1

 $k_m = 0$

- 3. Robot moves (green)
 - update heuristics for new start node

$$g = 0$$
 $rhs = 0$

 $g = \infty$ rhs = 2 <4,2>

- 4. Obstacle detected (dark gray)
 - adjacent edge weights = ∞

update k_m

k_m= 1

g = 0rhs = 0

 $g = \infty$ rhs = 2 <4,2>

- 4. Obstacle detected (dark gray)
 - adjacent edge weights = ∞
 - update k_m
 - update rhs of source nodes

<3,2>

g = 1

 $g = \infty$

<5,3>

rhs = 3

rhs(goal) = 0, always

g = 0

rhs = 0

- 5. Repeat from 2
- 2. Replan path

 $k_{\rm m} = 1$

2. Replan path

2. Replan path

 $g = \infty$

2. Replan path

= ∞

2. Replan path

2. Replan path

 $k_{m} = 1$

(dequeued)

 $g = \infty$

2. Replan path

= ∞

2. Replan path

$$g = \infty$$
 rhs = ∞

2. Replan path

 $g = \infty$

Found new shortest path (blue) from current start (green) to goal (red)

$$g = 0$$

rhs = 0

rhs = 10

- 3. Robot moves (green)
 - update heuristics for new start node

maintain queue from before

$$g = 0$$
 $rhs = 0$

$$g = 10$$
 rhs = 10

 $rhs = \infty$

 $k_{m}=2$

D* Lite Example

- 4. Obstacle moves!
 - update edge weights
 - update k_m

$$g = 0$$

rhs = 0

$$g = 10$$

rhs = 10

 $g = \infty$

rhs = ∞

- 4. Obstacle moves!
 - update edge weights
 - update k_m
 - update rhs of source nodes

Note that this node was removed from the queue because it is now locally consistent

$$g = 10$$

rhs = 10

 $g = \infty$

g = 0

rhs = 0

- 5. Repeat from 2
- 2. Replan path

$$g = 10$$

rhs = 10

2. Replan path

rhs = 2

2. Replan path

$$g = 1$$
 rhs = 1

 $k_{m}=2$

Found new shortest path!

$$g = 1$$
 rhs = 1

 $k_{m}=2$

g = 1rhs = 1

- 3. Robot moves
 - update heuristics for new start node

$$g = 2$$

rhs = 2

g = 1rhs = 1

- 4. Obstacle moves, chasing robot!
 - update edge weights

g = 0rhs = 0

$$g = 2$$

rhs = 2

 ∞

 ∞

- 4. Obstacle moves, chasing robot!
 - update edge weights
 - update k_m
 - update rhs of source nodes

$$g = 0$$
 $rhs = 0$

g = 2rhs = ∞ <6,2>

- 5. Repeat from 2
- 2. Replan path?
 - No need to dequeue any nodes because the smallest key (<6,2>) is greater than key(start) (<4,1>).

$$g = 0$$
 $rhs = 0$

$$g = 2$$

rhs = ∞
<6,2>

 ∞

g = 1rhs = 1 $k_{m} = 3$

- 3. Robot moves
 - Robot reaches goal: Done!

g = 0rhs = 0

g = 2rhs = ∞ <6,2>

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Efficiency

- A* expands each node at most once
- D* Lite (and LPA*) expands each node at most twice
 - But will in most cases expand fewer nodes than A*
- A* might performs better if:
 - Changes are close to start node
 - Large changes to the graph

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Greedy mapping

Greedy mapping

Goal

Greedy mapping Goal

Goal

Anytime Dynamic A* (AD*)

- Combines the benefits of anytime and incremental planners
- In the real world:
 - Changing environment (incremental planners)
 - Agents need to act upon decisions quickly (anytime planners)

Ref: Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & hrun, S. (2005, June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In *ICAPS*(pp. 262-271).

Anytime Planners

- Usually start off by computing a highly suboptimal solution
 - hen improves the solution over time
- A* with inconsistent heuristics for example
 - Inflated heuristic values give substantial speed-up
 - Inflated heuristics make the algorithm prefer to keep expanding paths
 - Use incrementally less inflated heuristics to approach optimality

Anytime Dynamic A* (AD*)

- Starts off by setting a sufficiently high inflation factor
 - Generates suboptimal plan quickly
- Decreases inflation factor to approach optimality
- hen changes to edge costs are detected the current solution is repaired
 - If the changes are substantial the inflation factor is increased to generate a new plan quickly

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Application to mobile robotics

How do we go from a complete configuration space to a graph?

This image in the public domain.

Reference: Lecture given by Michal Čáp in 2.166 and paper currently in review

Application to mobile robotics

How do we go from a complete configuration space to a graph?

202

paper currently in review

Holonomic System

No differential constraints

Nonholonomic System

Differential constraints

Methods

- Cell decomposition
- Visibility graph
- Sampling-based roadmap construction

Cell Decomposition

Cell Decomposition

Cell Decomposition

- Works in environments where obstacles are 2D polygons
- Path is not optimal
- Only holonomic systems

- Only holonomic systems
- Optimal path
- Circular robot

Sampling-based Roadmap Construction

Deterministic sampling

Random sampling

Sampling-based Roadmap Construction

Connecting Samples

- Steering function used
 - Steer(a, b) gives feasible path between samples
 - Nonholonomic
- Dubins path
 - Shortest path between two points
 - Can be constructed of maximum curvature and straight line segments
 - RSR, RSL, LSR, LSL, RLR or LRL

Outline

- Motivation
- Incremental Search
- The D* Lite Algorithm
- D* Lite Example
- When to Use Incremental Path Planning?
- Algorithm Extensions and Related Topics
- Application to Mobile Robotics

Backup

Incremental Path Planning

- Dynamic A* (D*) Stentz, 1994
 - Initial combination of A* and incremental search for mobile robot path planning.
- DynamicsSWSF-FP Ramalingam and Reps, 1996
 - o Incremental search technique.
- Lifelong Planning A* (LPA*) Koenig and Likhachev, 2001
 - Generalizes A* and DynamicsSWSF-FP for indefinite re-planning on finite graph.
- D* Lite Koenig and Likhachev, 2002
 - Extends LPA* to provide D* functionality for mobile robots.
 - Simpler formulation than D*.
- More recent extensions to D* and D* Lite, including Anytime D* (AD*), Field D*, etc.
- Other methods...

D* Algorithm

```
Function: INSERT (X, hnew)
L1 if t(X) = NEW then k(X) = h_{new}
L2 else
L3
      if t(X) = OPEN then
L4
         k(X) = MIN(k(X), h_{new}); DELETE(X)
      else k(X) = MIN(h(X), h_{new})
L6 h(X) = h_{now}; r(X) = R_{curr}
L7 f(X) = k(X) + GVAL(X, R_{curr}); f_B(X) = f(X) + d_{curr}
L8 PUT - STATE(X)
Function: MIN-STATE ()
L1 while X = GET - STATE() \neq NULL
      if r(X) \neq R_{curr} then
        h_{new} = h(X); h(X) = k(X)
        DELETE(X); INSERT(X, h_...)
      else return X
    The MIN-VAL function, given below, returns the f(°)
and k(°) values of the state on the OPEN list with minimum
```

```
L3
L4
1.5
L6 return NULL
f(^{\circ}) value, that is, \langle f_{min}, k_{vol} \rangle.
Function: MIN-VAL ()
L1 X = MIN - STATE()
L2 if X = NULL then return NO - VAL
L3 else return \langle f(X), k(X) \rangle
```

Function: PROCESS-STATE () L1 X = MIN - STATE()L2 if X = NULL then return NO - VALL3 $val = \langle f(X), k(X) \rangle$; $k_{val} = k(X)$; DELETE(X)L4 if $k_{val} < h(X)$ then for each neighbor Y of X: L6 if $t(Y) \neq NEW$ and LESSEQ(COST(Y), val) and L7 h(X) > h(Y) + c(Y, X) then L8 b(X) = Y; h(X) = h(Y) + c(Y, X)L9 if $k_{val} = h(X)$ then L10 for each neighbor Y of X: L11 if t(Y) = NEW or L12 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y)) \text{ or }$ L13 $(b(Y) \neq X \text{ and } h(Y) > h(X) + c(X, Y)) \text{ then}$ L14 b(Y) = X; INSERT(Y, h(X) + c(X, Y))L15 else L16 for each neighbor Y of X: L17 if t(Y) = NEW or L18 $(b(Y) = X \text{ and } h(Y) \neq h(X) + c(X, Y))$ then L19 b(Y) = X; INSERT(Y, h(X) + c(X, Y))L20 else L21 if $b(Y) \neq X$ and h(Y) > h(X) + c(X, Y) and L22 t(X) = CLOSED then L23 INSERT(X, h(X))L24 else L25 if $b(Y) \neq X$ and h(X) > h(Y) + c(Y, X) and L26 t(Y) = CLOSED and L27 LESS(val, COST(Y)) then

```
Function: MODIFY-COST (X, Y, cval)
```

L1 $c(X, Y) = c_{val}$ L2 if t(X) = CLOSED then INSERT(X, h(X))

L3 return MIN-VAL()

Function: MOVE-ROBOT (S, G)

L1 for each state X in the graph: L2 t(X) = NEW

L3 $d_{curr} = 0$; $R_{curr} = S$

L4 INSERT(G, 0)L5 val = (0,0)

L6 while $t(S) \neq CLOSED$ and $val \neq NO - VAL$

val = PROCESS - STATE()

L8 if t(S) = NEW then return NO - PATH

L10 while $R \neq G$:

L9 R = S

L11 if $s(X, Y) \neq c(X, Y)$ for some (X,Y) then

L12 if $R_{curr} \neq R$ then

L13 $d_{curr} = d_{curr} + GVAL(R, R_{curr}) + \varepsilon$; $R_{curr} = R$

L14 for each (X,Y) such that $s(X,Y) \neq c(X,Y)$: L15 val = MODIFY - COST(X, Y, s(X, Y))

L16 while LESS(val, COST(R)) and $val \neq NO - VAL$ val = PROCESS - STATE()

L17 L18 R = b(R)

L19 return GOAL - REACHED

INSERT(Y, h(Y))

L28

L29 return MIN - VAL()

LPA* Algorithm

```
procedure CalculateKev(s)
\{01\} return [\min(g(s), rhs(s)) + h(s); \min(g(s), rhs(s))];
procedure Initialize()
\{02\}\ U = \emptyset;
\{03\} for all s \in S rhs(s) = g(s) = \infty;
\{04\}\ rhs(s_{start}) = 0;
\{05\} U.Insert(s_{start}, [h(s_{start}); 0]);
procedure UpdateVertex(u)
\{06\}\ \text{if } (u \neq s_{start})\ rhs(u) = \min_{s' \in pred(u)} (g(s') + c(s', u));
\{07\} if (u \in U) U.Remove(u);
\{08\} if (g(u) \neq rhs(u)) U.Insert(u, CalculateKey(u));
procedure ComputeShortestPath()
{09} while (U.TopKey() \dot{<} CalculateKey(s_{qoal}) OR rhs(s_{qoal}) \neq g(s_{qoal}))
{10}
       u = U.Pop();
        if (g(u) > rhs(u))
          q(u) = rhs(u);
{12}
{13}
           for all s \in succ(u) UpdateVertex(s);
{14}
        else
{15}
          q(u) = \infty;
           for all s \in succ(u) \cup \{u\} UpdateVertex(s);
{16}
```

```
procedure Main()
\{17\} Initialize();
\{18\} forever
\{19\} ComputeShortestPath();
\{20\} Wait for changes in edge costs;
\{21\} for all directed edges (u, v) with changed edge costs
\{22\} Update the edge cost c(u, v);
\{23\} UpdateVertex(v);
```

From Koenig, Likhachev, & Furcy (2004)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Figures 3 and 4 in Keonig, Sven, M. Likhachev, and D. Furcy. "Lifelong Planning A*." In Artificial Intelligence, 155 (1-2): 93-146.

Review of A*

- Use admissible heuristic, h(s) ≤ h*(s), to guide search.
- Keep track of total cost/distance from start, g(s).
- Order node expansions using priority queue, with priorities f(s) = g(s) + h(s).
- Avoid re-expanding nodes by using expanded list.
- Better heuristics (how closely h(s) approximates of h*(s)) improve search speed.
- Guaranteed to return optimal solution if one exists.

RHS Values

 One-step look-ahead on g-values, rhs(s) = 0 if s is beginning node of search, otherwise:

$$\mathsf{rhs}(\mathsf{s}) = \mathsf{min}_{\mathsf{s}' \in \mathsf{pred}(\mathsf{s})} \left(\mathsf{g}(\mathsf{s}') + \mathsf{c}(\mathsf{s}', \mathsf{s}) \right)$$

- Potentially better informed than g-value after changes to search graph.
- Note: term comes from grammar rules used in DynamicsSWSF-FP algorithm, no other significance.

Local Consistency

- Tells us which nodes may need g-values updated in order to find shortest path.
- Node s is locally consistent iff:

$$g(s) = rhs(s)$$

Node s is locally overconsistent iff:

Node s is locally underconsistent iff:

• Initially, all nodes are locally consistent with $g(s) = rhs(s) = \infty$, with exception of start node, $rhs(s_{start}) = 0$ and $g(s_{start}) = \infty$

Comparison of Incremental Path Planning to A*

Similarities:

 First search expands same nodes in same order as A*, if A* breaks ties in favor of smaller g-values.

Differences:

- Priority queue ordered using key, k(s):
 - \circ k(s) = [k₁(s); k₂(s)]
 - \circ $k_1(s) = f(s) = min(g(s), rhs(s)) + h(s)$
 - $\circ \quad k_2(s) = g(s) = \min(g(s), rhs(s))$
 - \circ Lexicographic ordering, k(s) < k'(s) iff:
 - $= k_1(s) < k_1'(s)$
 - OR $(k_1(s) = k_1'(s) \text{ AND } k_2(s) < k_2'(s))$
- No expanded list, node re-expansion prevented by local consistency checks.
- Nodes may be expanded twice, depending on algorithm specifics, once when underconsistent and once when overconsistent.

Anytime Dynamic A* (AD*)

left: A*

right: A^* with $\epsilon = 2.5$

left: D* Lite

right: **D* Lite** with $\epsilon = 2.5$

left: ARA*

right: Anytime Dynamic A*

© American Association for Artificial Intelligence. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Fig: Likhachev, M., Ferguson, D. I., Gordon, G. J., Stentz, A., & hrun, S. (2005, June). Anytime Dynamic A*: An Anytime, Replanning Algorithm. In *ICAPS*(pp. 262-271).

MIT OpenCourseWare https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.