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! You’re dropped in the wild 

! You have a compass 

! You have a map 
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Tips from orienteering experts!: 

! “Relocate: everyone gets disoriented from time to time.” 

! “Stop, locate your last known location on the map, think 
about what you've seen and what direction you were 
moving, and how far you have gone.” 

! “Look around you for any feature large or unique 
enough to be mapped.” % 
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Robot Human 

Encodes distances, surfaces rooms, objects, relationships 

Memory dense sparse 

Useful for motion planning activity planning 
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“Signs and symbols that contain meaningful 
concepts for humans” 
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Human-robot interaction 

Function-driven navigation and planning 

Performance and memory optimization 

Cheaper hardware 
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The problem of localizing based on semantic information 

For the Grand Challenge, we have a map with labeled objects 
and their coordinates 

How can we localize based on what objects we see? 
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Simple question: Where am I? 

Not so simple answer 

The answer depends on the map used 
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If you want quantitative pose description: 

You need metric map for localization 

X, Y, Z coordinates in space 

Angles for orientation 
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Quantitative pose descriptionsppppp p 
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! Localization problem statement 
Suppose that the control ut is applied to the robot and, after moving, the robot 
obtains a random observation zt+1. Given a prior belief over xt and the map Y, 
what is the posterior belief of xt+1 after taking takes zt+1 and ut into account? 

! When we translate the localization question into probabilistic terms, we aim to 
find the distribution 

position at position observation command map 
time t+1 at time t at time t+1 variable at time t !% 
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! The Bayesian expansion of this posterior decomposes into 

Observation Actuation model Belief 
noise model representation 

! Our representation of the map limits what models we can use: 

" Topological map: actuation model to be transition probabilities 

" Laser scan observations: noise model over ! n 

" Object detection observations: noise model over sets, or boolean variables 
!& 

! Efficient semantic localization requires designing observation and actuation 
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! Representing our posterior over poses can be difficult 

! Kalman filter # p(x) is a Gaussian 

! Particle filter # p(x) is approximated by a set of points 
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Sequential Importance Sampling Technique 

Algorithm Steps: 
0. Sample (using Initial Belief) 

1. Update Weights 

2. Resample 

3. Propagate 
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Focus on problem with only one dimension 

9 ?0@02A0;B;<26,8520  9 +/,1=3/1;>518,06/;82;
82;F32=0>;,<858=>/ 9 C251D;723A,3>;E/<2658D; F32=0>;G/<2A 

9 C251D;H/,1=3/H/081  

Goal: Determining unknown state - our location 
") 
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Algorithm Steps: 
00. Sample (using Initial Belief) 

If completely unknown initial state -> N samples from uniform distribution 

1. Update Weights 

2. Resample 

3. Propagate 
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Algorithm Steps: 
0. Sample (using Initial Belief) 

If completely unknown initial state -> N samples from uniform distribution 

11. Update Weights 
Compare observations to expectations of each particle 

2. Resample 

3. Propagate 
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Algorithm Steps: 
0. Sample (using Initial Belief) 

If completely unknown initial state -> N samples from uniform distribution 

1. Update Weights 
Compare observations to expectations of each particle 

22. Resample 
Create N new samples based on weight distribution calculated 

3. Propagate 
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Algorithm Steps: 
0. Sample (using Initial Belief) 

If completely unknown initial state -> N samples from uniform distribution 

1. Update Weights 
Compare observations to expectations of each particle 

2. Resample 
Create N new samples based on weight distribution calculated 

33. Propagate 
Use dynamics model or inputs to propagate particles 
Take into account uncertainty with new weight calculations 
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Algorithm Steps: 
0. Sample (using Initial Belief) 

If completely unknown initial state -> N samples from uniform distribution 

1. Update Weights 
Compare observations to expectations of each particle 

2. Resample 
Create N new samples based on weight distribution calculated 

3. Propagate 
Use dynamics model or inputs to propagate particles 
Take into account uncertainty with new weight calculations 

Repeat Steps 1 - 3 
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1. Motivation for Semantic Localization 

2. Particle Filters 

33. Semantic Localization Implementation 
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Observation Actuation model Belief 
noise model representation 

Continuously Solve for most probable x 

Thats our location 
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While the robot is moving 

zMake observations t+1 

Generate a probable location P(x) 

Update that location based on actuation P(xt+1 | xt , ut ) 

Simulate the observations at that location 

Compare expected and actual 

Update our location estimates based on comparison 

P( zt+1 | xt+1 ) 
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We needt o define zz (our observation) 

AL abeled Laser Scan 

AS cene with Objects at Locations 

AS et ofO bjects 
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Legend 

mailbox 

tree 

house 
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Legend 

mailbox 

tree 

house 
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Legend 

mailbox 

tree 

house 

67"(I)"$(7)>+'%&)A+0)'%&"0?"(&'+%)1'&7)D.P 
%! 



�

D'",5E+AE/'"1)1'&7)>+,:3+%)+JN"(&? 

> 

Legend 

mailbox 

tree 

house 
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Depending on what we characterize the observation as, there are different 
opportunities to get it wrong 

Observation Potential Errors 

Distance & Bearing Noise, Sensor Limitations 

Object Class Classification Error 

Sets of Objects Equality under Permutations 
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P( Z | Y(x), x )  P( zt+1 | xt+1 ) 

Z = Set of Ob served Object s 

House, M ailb ox 

Y(x) = Set of Exp ect ed Object s for a gi ven positi on 

X = Positi on 
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Z = Tree, Tree, Mailbox 



Y = ? 

; 

; 

; 

; 

; 
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Did we classify our observations 
correctly? 
Did we observe everything in our FoV? 

Did we interpret nothing as something? 

Did we interpret two things as one thing? 
Key Assumption 1: Each observation corresponds to exactly 1 object 

%' 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

Solve 
P( Z | Y(x), x ) 
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Y = ? 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

Z = Y = 

Pi = Z Y &! 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

This can keep expanding in relevant terms depending on the structure that 
detects objects 

as asP( zi | yi , x ) =P( c | y cl s ) P( s | c , y cl s ) P( b | y , x )  
How often do we If classifications have If we know the 

miss classify a score, is that score bearing we are 
statistically likely viewing the object, 

does that effect 
&"classification? 



      
       

     
 

 

K'5)1")(,$??'A:)(+00"(&,:; 

Assume: W e see everythi ng i n our F oV 
Assume: W e never see somethi ng th at d oesn ’t exi st 

pi | Y | 

P( Z | Y(x) , x ) = P( zi , pi | yi , x ) 
i = 0 

&# 
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Y = ? 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

Z = Y = 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

K'5)1")?"")"/"0:&7'%3; 

What if we see nothing 
P( O | Y(x), x ) 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

| Y(x) | 

P( O | Y(x) , x ) = ( 1 - P( yi | x ) ) 
i= 0 

Key Assumption 2: An object is observed with some probability P( yi | x ), 
and not with probability 1 - P( yi | x ) 

Key Assumption 3: For a given position x and map, any two object detections 
are independent &* 
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Y = ? 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

Z = Y = 

&( 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

What if there is nothing 
P( Z | O, x ) 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

| Z | 

P( Z | O , x ) = e ( K(z) ) 

Key Assumption 4: Noise is poisson distributed in time according to and 
spatially according to K(z) *! 
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Assume: We see everything in our FoV 
Assume: We never see something that doesn’t exist 

So what is K(z) ? 

1 1 1 

| C | | S | | B | 
These correspond to the 
categories for classifying 

Possible Possible Scores of Possible Bearings 
Classifications Classifications 
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Solve 

P( Z | Y(x), x ) 

Z = Y = 

*# 
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Solve 

P( Z | Y(x), x ) 

Let 

| Z |=  | Y | - n + o 

Where n is missed detections and o is false detections 
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Solve 

P( Z | Y(x), x ) 
P( Z | Y(x), x ) = Pi now maps both actual and 

false detections 
pi | Y | 

P( zi , pi | yi , x ) * P( yi | x ) 
i= 0 

n o 

( 1 - P( yi | x ) ) e ( K(z ) ) pi

*% 
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Humans can’t walk into a room and reproduce an exact map, but we can store the 
most important aspects of the room and reason about what they’re used for. 

Robots can store a pixel-perfect map of a room, but have no intuitive understanding. 

This means we’re better at actually doing tasks with the environment. 

How can we make robots localize and think more like humans? 
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1. Motivation for Semantic Localization 

2. Particle Filters 

3. Semantic Localization Implementation 
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F. Gustafsson, “Particle Filter Theory and Practice with Positioning Applications”, IEEE A&E 
Systems Magazine Vol. 25, No. 7, July 2010 

O. Cappe, S. Godsill and E. Moulines, “An overview of existing methods and recent advances in 
sequential Monte Carlo”, IEEE Proceedings, Vol. 95 No. 5 pp. 899–924 2007 

N. Atanasov, M. Zhu, K. Daniilidis, and G. Pappas, “Localization from Semantic Observations via 
the Matrix Permanent ”, The International Journal of Robotics Research, vol. 35 no. 1-3, pp.73-99, 
January 2016 

http://www.us.orienteering.org/orienteers/training/getting-started 

Various YouTube videos embedded in slides 
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! We will use a labeled object map " Legend 
which is a set of labeled N objects 
< Pi , ci > for i = 1...N 

! Pi is an ordered list of vertices 
<x, y> of the polygon boundary 

mailbox 

tree 

house 

! ci is the class of the object, e.g. tree 
! Our robot pose xt will be a position and orientation <x, y, $> 

! The actuation model can be any continuous dynamical probability model 

! Must define the observation noise model 
') 
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