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Motivation

Orienteering Grand Challenge | =

S
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What would you do? o

e You're dropped in the wild
e You have a compass

e You have a map
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Orienteering Relocation Tips

Tips from orienteering experts!:
e “Relocate: everyone gets disoriented from time to time.”

e “Stop, locate your last known location on the map, think
about what you've seen and what direction you were
moving, and how far you have gone.”

e “Look around you for any feature large or unique

enough to be mapped.” 5



Orienteering Maps
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What do we want in our map?

Living
Room

© source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more

information, see

Robot Human
Encodes distances, surfaces rooms, objects, relationships
Memory dense Sparse
Useful for motion planning activity planning
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Semantic Information

“Signs and symbols that contain meaningful
concepts for humans”



Semantic Information: Why is it important?

Human-robot interaction
Function-driven navigation and planning
Performance and memory optimization

Cheaper hardware



Semantic Localization

The problem of localizing based on semantic information

For the Grand Challenge, we have a map with labeled objects
and their coordinates

How can we localize based on what objects we see?
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3. Semantic Localization Implementation



localization

Simple question: Where am I

Not so simple answer

The answer depends on the map used
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Metric Localization

If you want quantitative pose description:
You need metric map for localization
X, Y, Z coordinates in space

Angles for orientation



Metric Localization

Quantitative pose descriptions




Review of Localization

e Localization problem statement

Suppose that the control u; is applied to the robot and, after moving, the robot
obtains a random observation z.;. Given a prior belief over x; and the map Y,
what is the posterior belief of x.,; after taking takes z,; and u, into account?

e When we translate the localization question into probabilistic terms, we aim to
find the distribution

(i1 |Te, 2041, Ut, Y)
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position at position  observation command

time t+1 at time t at time t+1  variable at time t




Review of Localization

e The Bayesian expansion of this posterior decomposes into

D(2¢41|Tesr1) P(xea1|xe, up) p(x)
Observation Actuation model Belief
noise model representation

e Our representation of the map limits what models we can use:

o Topological map: actuation model to be transition probabilities

o Laser scan observations: noise model over &

o0 Object detection observations: noise model over sets, or boolean variables




Particle Filters

e Representing our posterior over poses can be difficult

D(2e41|Tesr1) P(xei1|xe, ue) p(x)

e Kalman filter - p(x) is a Gaussian

e Particle filter - p(x) is approximated by a set of points




localization demo
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Particle Filter

Sequential Importance Sampling Technique

Algorithm Steps:
0. Sample (using Initial Belief)

1. Update Weights

2. Resample

3. Propagate




Particle Filter- Example

Focus on problem with only one dimension

Aircraft Sensor
-_— Map

e Constant altitude gy

e Unknown x location e Measures distance to e Known mapping of x location
e Noisy forward velocity ground below to ground altitude

e Noisy measurements

Goal: Determining unknown state - our location
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Particle Filter- Example

e Constant altitude
e Unknown x location
e Noisy forward velocity




Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution
1. Update Weights
2. Resample

3. Propagate
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Initial Sampling with Unknown State

Unknown x location

o

o0 0 0 0 0 0 006 0 0 0 ¢
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Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle

2. Resample

3. Propagate
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Measured value from our noisy sensor
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Expected height values of each particle




Likelihood that particle explains measurement




Particle weights based on likelihood




Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle

2. Resample

Create N new samples based on weight distribution calculated

3. Propagate
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Resample from measurement distribution




Resample from measurement distribution
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Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle

2. Resample
Create N new samples based on weight distribution calculated
3. Propagate

Use dynamics model or inputs to propagate particles
Take into account uncertainty with new weight calculations
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Dynamics Model P‘V’U\

Delta t between sensor measurements Forward velocity

Need to propagate particles in time _m‘;
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Dynamics Model P‘V’u\

Delta t between sensor measurements Forward velocity

Need to propagate particles in time m“
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Dynamics Model P‘V’U\

New weights based on probability of particle transition Forward velocity

How likely was it for the plane to move that far in delta t? mﬁ.;




Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)

If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

Compare observations to expectations of each particle

2. Resample

Create N new samples based on weight distribution calculated

3. Propagate

Use dynamics model or inputs to propagate particles
Take into account uncertainty with new weight calculations

Repeat Steps1-3
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Keep filtering

Using new measurements and propagating through time

Time Step 2
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Keep filtering

Using new measurements and propagating through time

Time Step 3
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Keep filtering

Using new measurements and propagating through time

Time Step 4
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Keep filtering

Using new measurements and propagating through time

Time Step 5
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Keep filtering

Using new measurements and propagating through time

Time Step 6
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Keep filtering

Using new measurements and propagating through time

Time Step 7
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Keep filtering

Using new measurements and propagating through time

Time Step 8
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localization demo
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Implementation

p(zip1|xesr) p(xep1|xe, uy) p(x)

Observation Actuation model Belief
noise model representation

Continuously Solve for most probable x

Thats our location
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Psuedo Code

While the robot is moving

Make observations Zt+1
Generate a probable location 1469,
Update that location based on actuation P(x;.; [ %, u;)

Simulate the observations at that location

P( Zt+] /Xt+1)

Compare expected and actual

Update our location estimates based on comparison

47




Observation model selection

We need; o define z (our observation)

Ay abeled Laser Scan
Ag cene with Objects at Locations

Ag et of 5 bjects
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Field-of-view with laser scanner

. Legend
mailbox

B

Check each line segment for intersection at each 6. What counts as a detection?




Object-Point Assumption




Field-of-view with point objects

Legend

mailbox

Check each point for intersection with FOV




Field-of-view with polygon objects




New observation type means new error types

Depending on what we characterize the observation as, there are different
opportunities to get it wrong

Observation Potential Errors
Distance & Bearing Noise, Sensor Limitations
Object Class Classification Error
Sets of Objects Equality under Permutations

53




P(Zt+1/Xt+]) — P(Z/ Y(X);X)

Z = Set of Observed Objects

Y(x) = Set of Expected Objects for a given position

X = Position
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Example

Trees

95




= {Tree, Tree, Mailbox}







What Do We Need To Consider?

Did we classify our observations

correctly?
Did we observe everything in our FoV? 'l
Did we interpret nothing as something? O
™ 1 _ __ ¢ s« oV . _ . el .S "
L1t wcC lllLCllJlCL LVWU Ll.l.ll.lBD ad Ull1CT Ll.l.ll.lB "‘

Key Assumption 1: Each observation corresponds to exactly 1 object
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Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

NE
P(Z]Y(x) x)
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Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

R R
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Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

This can keep expanding in relevant terms depending on the structure that

detects objects

P(z|y ,x)=P(clys) P(s|[c,yss) P(bly,x)

How often do we If classifications have If we know the
miss classify a score, is that score bearing we are
statistically likely viewing the object,
does that effect
e g 62
classifications



Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

| Y|

P(ZIYx),x)= 2 [[P(zulyx)
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Did we see everything?

: o T -

Assume: We never see something that doesn’t exist

* ¥
- -« *

7 = %« Y =

65



Did we see everything?

Assume: We never see something that doesn’t exist

What if we see nothing
P(Z ]| Y(x). x)
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Did we see everything?

Assume: We never see something that doesn’t exist

| Y(x) |

P(D]Y(x),x)= U(Lp(yj/x))

Key Assumption 2: An object is observed with some probability P( y; [ x ),
and not with probability1- P(y; / x )
Key Assumption 3: For a given position x and map, any two object detections

are independent 67




68




Did we see nothing as something?

ASSUIIE. WE IIeVer 5ee SUHIEETHHg Tiat doesII T exist

*
- -«
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Did we see nothing as something?

What if there is nothing
P(Z| P x)
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Did we see nothing as something?

| Z]

P(ZIP.x)= ] (N*K(2))

Key Assumption 4: Noise is poisson distributed in time according to Aand
spatially according to K(z) 71



Did we see nothing as something?

So what is K(z) ¢
| 1 1
— ®¥ — % — These correspond to the
| C | | S | | B | categories for classifying
Possible  Possible Scores of Possible Bearings
Classifications  Classifications
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Putting it all together

Solve
P(Z]Y(x) x)

(- -
2- - . “{g;wm-»: a: .i}
Lo anbg fel g 3 )




Putting it all together

Solve
P(Z]Y(x) x)

Let

| Z|=|Y|-n+o

Where n is missed detections and o is false detections
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Putting it all together

P(Z]|Y(x)x)= Pi now maps both actual and

false detections

Z -H-P(Z, pil Vis X)*P(y; [ x)

W(J P(y[x)) » NT(MK& ))
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Semantic Localization Video
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Why?

Humans can’t walk into a room and reproduce an exact map, but we can store the
most important aspects of the room and reason about what they’re used for.

Robots can store a pixel-perfect map of a room, but have no intuitive understanding.
This means we’re better at actually doing tasks with the environment.

How can we make robotslocalize and think more like humans?
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Conclusion

1. Motivation for Semantic Localization
2. Particle Filters

3. Semantic Localization Implementation
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Appendix: Our Semantic Map Definition

e We will use a labeled object map Legend
which is a set of labeled N objects mailbox
<P;,c;>fori=1.N

. tree
a °

e P, is an ordered list of vertices
house

<x, y> of the polygon boundary

® ¢; is the class of the object, e.g. tree
® Our robot pose x; will be a position and orientation <x, y, 6>

e The actuation model can be any continuous dynamical probability model

e Must define the observation noise model 80
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