WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE IN A NATIONAL PARK ...

SURE, EASY GIS LOOKLP
GIMME A FEW HOURS.

. AND CHECK WHETHER
THE PHOTD 15 OF A BIRD.

T NEED A RESEARCH

% TEHHHHDFWE/YEHFE&

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Courtesy of xkcd.com. Used with permission.
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Image Classification via
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Overview

* What is Deep Learning?



Deep Learning Refers to...

Machine Learning algorithms designed to

extract high-level abstractions from data
via multi-layered processing architectures

using nonlinear transformations at each layer



Human Visual System

» Distributed Hierarchical processing in the primate cerebral cortex (1991)

« The ventral (recognition) pathway in the visual cortex
— Retina - LGN - V1 - V2 - V4 - PIT - AIT (80-100ms)

[picture from Simon Thorpe]

e T spinal cord
- T0 finger muscle = 1 60220 M
180-260 ms

© AAAS. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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How To Classify a Face?

Identify where the face region is
* Foreground Extraction
e Edge Detection

» Classify features of the face
* |dentify and describe eyes, nose, mouth areas

 Look at face as a collection of those features

= PLE
—-K" S =k |

Wl 2
.\ .r ‘)‘.ﬂl\.

© ACM, Inc. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.
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Common Architectures

*Deep Convolutional Neural Networks (CNNs)
*Deep Belief Networks (DBNSs)
*Recurrent Neural Network



Common Architectures

*Deep Convolutional Neural Networks (CNNs)



ImageNet Competition Through Time

Top-5 error rate

Classification error

All CNN models

0.16

o
0.2|
0.1}
0
2010 2011

2012 2013 2014

ILSVRC year

0.049

2015
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Overview

* Image Processing



Classic Classification -- Feature Engineering

Level 4
Blurand % 1/16 resolution

subsample ’ Level 3
Blur and > 1/8 resolution
subsample ' @ Level 2

N 1/4 resolution

Blur and

subsample
Level 1
Blur and 1/2 resolution
subsample
Level 0
Original
image

template

d & & 8 8 8B 8 8 @
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What if the techniques could be “learned”?

ASNINY
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© ACM, Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Step 1: Convolution - Definition

Informal Definition: Procedure where two sources of information are intertwined.

Formal Definition ;

Discrete :

i i fln,n,]-glx—n,y—n,]

n‘ = 00 ”2 = —00

flx,y]* glx,y]

Continuous :



Convolution - Example

Assume the following kernelffilter :




Convolution

1/11/(1,/0(0
0,01/1,1]|0
0,00,/1,/1]|1
Ojo(1|11|0
O|j1(1|10|0
Image

Convolved
Feature



A ER ISR EEE

50 100 150 200 250 300 350

400

450

.0838 | .0113
6193 | .0838
.0838 | .0113
1 2 1
0 0 0
-1 -2 -1
1 1
-8 1
1 1
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More Information? Fourier Transform!

Sum of a set of sinusoidal gratings differing in spatial frequency, orientation,
amplitude, phase

18



Fourier Transform
e Fourier Transform image itself is weird to visualize -- Phase and Magnitude!

e Magnitude -- orientation information at all spatial scales

19



Sonnet for Lena

©O dear Lena, your heanty in sn vmat

It is hard soanetimen to cescribe it Inat,

1 thought the rutire workl 1 would bnpress
if only your portrait I could compress.
Alas! Funt when [ tried to use VQ

20



Overview

« CNN Architecture

21



Why Neural Net

Hubel & Wiesel (1959, 1962)

3
D
x B
Recording electrode ——« %
Visual area 3
of brain =
&
(]
L
-
=]
0 2 e ' ' T *e
0 Stimulus e o o o »

Stimulus orientation (deg)

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 22
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The Structure of a Neuron

Dendrite

Nucleus

Axon Terminal

output

Schwann cell

Myelin sheath

23



Combining Neurons into Nets




Convolution Step

input_ I
1. \/
mput_ X -
2 (weight_2) Activation output

mput_

Convolution Step
(dot product between filter and input)

25



Convolutional Layer

}'!




Activation Step

input_ I
1. \/
mput_ X -
2 (weight_2) Actiyation output
— \vvvlvl ll._h
mput_ Nle)aiom
n

Activation Step



Activation Layer




CNN overview

Convolution

and
Activation

>

Subsampling

I convolution layer I

sub-sampling layar

convalution layer

I sub-sampling layar

29



Activation Step

Each neuron adds up its inputs, and then feeds the sum into a function -- the
activation function -- to determine the neuron's output.

Eg : Sigmoid, tanh, ReLu

L0

Wo

axon from a neuron

*@ synapse
woeIo

cell body
w1y

- E w; &;
?

W2 T2

f

(T )

output axon

activation
function

30



Activation functions - sigmoid

sl sigmoid activation
of function
|

1+




Activation function - tanh

. tanh(x)

AAAAAA




Activation function - Relu

Rel U

f(x) = max(0,x)

..................




Non-linearity Constraint

Activation function is to introduce non-linearity into the network

Without a nonlinear activation function in the network, NN, no matter how many
layers it has, will behave like a linear system and we will not be able to mimic
a ‘complicated’ function

A neural network may very well contain neurons with linear activation functions,

such as in the output layer, but these require the company of neurons with a
nonlinear activation function in other parts of the network.

34



Convolution Step

An RGB image is represented by a 3 dimensional matrix

The first channel holds the ‘R’ value of each pixel K
Planar 2d

maltrix

The second channel holds the ‘G’ value of each pixel

The third channel holds the ‘B’ value of each pixel

Eg: A 32x32 image is represented by a 32x32x3 matrix

Graphical presentation of
RGB3d matrix 4



Filter 5x5x3

32x32x3

36



32x32x3
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Input Volume vs Output Volume for convolution

W2 = W1 - (filter width) + 1
H2 = H1 - (filter height) + 1

W2 D2 =1 (D1 = filter depth)

Input Output

38



28x28x1

Neurons

v

Activation Map

28x28x1
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32x32x3

(28x28x1)* 5

40



Parameters

Input volume: 32x32x3

Filter size : 5x5x3

Size of 1 activation map: 28*28*1

Depth of first layer: 5

Total Number of neurons: 28*28*5 = 3920
Weights per neuron: 5*5*3 = 75

Total Number of parameters: 75*3920 = 294 000

Neurons

Activation Map

41



CNN overview

Convolution

and
Activation

>

Subsampling

I convolution layer I

sub-sampling layar

convalution layer

I sub-sampling layar
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Subsampling

Objectives:

Reduce the size of input/feature space

Keep output of the most responsive neuron of the given interest region.
Common Methods:

- Max Pooling

- Average Pooling

This involves splitting up the matrix of filter outputs into small non-overlapping
grids and taking the maximum/average

43



Single depth slice

o

1 1 2 4
max pool with 2x2 filters
5 6 7 8 and stride 2
3 | 2 1 0O
1 2 3 4

<
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Max Pooling

224x224x64
112x112x64

pool

|

— P
downsampling
112

224

224



Input Volume vs Output Volume for Max Pooling

W2 =W1 - (pool width) + 1
H2 = H1 - (pool height) + 1

D2 =D1

Input Output

46



CNN overview

Convolution

and
Activation

>

Subsampling

I convolution layer I

sub-sampling layar

convalution layer

I sub-sampling layar
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Fully Connected Layer

Neurons in fully connected layers have full connections to all activations in the
previous layer

layer layer layer

g
[ s R
N
7SN
i “ o {_.
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Softmax

Typically, output layer has one neuron corresponding to each label/class

The softmax function, or normalized exponential, "squashes" multi-dimensional
vector of arbitrary real values to a multi-dimensional vector of values in the range

(0, 1) that add up to 1.

Zf:] X' W

Ply = jlx) =

49



Overview

* Training Process

50



Train the Network (setup the problem)

- The training is in fact to find a set of weights (for the filters) that minimize the cost
functions, C(w,b).

- Normally, gradient descent algorithm is used to find the optimal

- Therefore, we need to find dC/owlik and dC/dblj,and we update the weights and bias

by:
’ oC

'w—>'w—778—
w

b%b—n%—(bj.
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Train the Network (compute the gradient)

- Traditionally, for one training data, If using conventional method (central
difference) and we have a million weights, the cost function, C(w,b), will
need to be calculated a million times !!

0C _ C(w+eej) — C(w)

~

ow; €

- How can we just calculate C(w,b) once? -- (Backpropagation Algorithm,
Rumelhart, Hinton, and Williams, 1986).

Xy

neuron j, layer [



http://en.wikipedia.org/wiki/David_Rumelhart
http://www.cs.toronto.edu/~hinton/
http://en.wikipedia.org/wiki/Ronald_J._Williams

Backward Propagation of Errors




Backward Propagation of Errors




Backward Propagation of Errors




Backward Propagation of Errors (put it together)

- Proof: http://neuralnetworksanddeeplearning.com/chap2.html

80 o X derivate of activation function

ow X output from the neuron in the previous layer

56
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Backward Propagation of Errors (put it together)

- Tutorial: http://neuralnetworksanddeeplearning.com/chap2.html

. df(e)
W =W o PO~
(x)1 (xiyt — 770 do 1
. df(e)
W o = W, oy — 6 ——=X
v, (P 1= Wapr— 779 de 2

57
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Backward Propagation of Errors (put it together)

dfie)

W32 = Weryg — 1710, 1
(x1) (x1) o

. df,(e)

w =W —no
(x2)2 =~ Wx2)2 2T,

X5




Backward Propagation of Errors (put it together)

df(e)

y  — ap
Wig=Wiy— 170, N
de

. df,(e) "

de

I’ — A




Backward Propagation of Errors (put it together)

NAGK

N — y
Wis= Wyg —1]0 Vs
de

df, (e)

de

N — y N

Vs




Train the network (Initializing Weights)

Initialization is need for the gradient descent algorithm and it is critical for the

learning performance:

df. (e)
F . e ~Ufg .
W= Wy — 10 YV,
de Lo
T W= We, — N6 A, y at /
56— Wsg Vs )
Cost o i
f
0.4
/1’1'.':
—> Epoch ——

sigmoid activation
function
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Initial Weights

We want to stay away from the saturation area.

Suppose there is n weights coming in one Neuron
Best strategy is: Normal(0,1/,/7a )

)
Cost

62



Example architecture

Alex Net, 61 millions weights

Al
04 saas \dense
48 2048 zﬁs
5
5
5 »> »
. dense dense]
""" 55 1000
X7 192 192 128 Max || |
: 2048 2048
Stride Max 128 Max. pooling
Uof 4 pooling pooling
3 48

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/.

63


https://ocw.mit.edu/help/faq-fair-use/

Preprocessing Tricks and Tips

Suppose we have dataset X = [N X D], where N is number of data points, and D is
their dimensionality

1. Mean Image Subtraction: Subtraction of the mean across each individual
feature in dataset

2. Normalization for NDimens<inn* Nivicinn hv standard deviatinn
original data zero-centered data normalized data

0




Preprocessing Tricks and Tips

3. Principle Component Analysis (PCA) for dimensionality reduction
- Generate covariance matrix across the data

- SVD factorization = E;(I“))(IM)T'
- Decorrelation, rotation into Eigenbasis o R
- Choose a top-k eigenvalues: X’ = [NxK] U= !ul U Un
4. Whitening I |
- Divide by eigenvalues (square roots of singularv , = _ yT, — [Z’E‘T"i
2~

- Result: Zero mean, Identity Covariance

original data decorrelated data whitened data




Data Augmentation

1. Rotations
2. Reflections
3. Scaling

4. Cropping

5. Color space
remapping

6. Randomization!
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Overview

* Image Classification Results
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Revisiting the ImageNet Competition (ILSVRC 2010)

Model Top-1 error rate Top-5 error rate
Sparse coding 0.47 0.28
SIFT + FVs 0.46 0.26
CNNs 0.37 0.17
_ 03— 028 _—
o
) All CNN models
5 02 0.16
Top-5 error rate _‘S 0.12
§ 0.1 0.07 |
© 0.049
)

ol
2010 2011 2012 2013 2014 2015
ILSVRC year
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mite container shi motor scooter eoparc
[ ] mite container srlp motor scooter leapard
i black widow lifeboat go-kart jaguar
il cockroach amphibian moped cheetah
| tick fireboat bumper car snow leopard
| starfish drilling platform golfcart Egyptian cat

e’:‘a
. ~

mushroom cherry adagascar cat

vertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Krizhevsky, Alex et al. Imagenet classification
with deep convolutional neural nets. NIPS 2012
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Google Street View House Numbers

**Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks* by lan J. Goodfellow,

Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet
© Goodfellow, Ian et al. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/
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“Multi-digit Number Recognition from Street View Imagery using Deep
Courtesy of Goodfellow, Ian et al. Used with permission. Convolutional Neural Networks” by lan J. Goodfellow, Yaroslav Bulatov,
Julian Ibarz, Sacha Arnoud, Vinay Shet 7



Recognizing Hand Gestures-HCI application

(c) (d)

h N. Jawad, D. Frederick, A. Gianni, C. Dan and M. Ueli, “Max-pooling convolutional
(C) (f) (g) ( ) neural networks for vision-based hand gesture recognition”, IEEE International
Conference on Signal and Image Processing Applications, 2011.

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Extended Image Classification: Video Classification

Extend image classification by adding temporal component to classify videos

Note that this adds additional complexity, but the underlying system is the same: Convolutional
Neural Nets

73



) ultramarathon ' ) longboarding ultimate (sport)
cycling ultramarathon heptathlon mushing longboarding ultimate (sport)
track cycling half marathon decathlon bikejoring aggressive inline skating hurling
road bicycle racing running hurdles harness racing frecstyle scootering flag football
marathon marathon pentathlon skijoring freeboard ( skall\l]cg% T t association football
ultramarathon inline speed skating sprint (running) carting sandboarding ex rugby sevens
P T ‘ — =

Qs el
T T s il G %
w.. . -

‘I :l.. ™ hby

demolition derby snowboarding whitewater kayaking indoor american football barrel racing

monster truck telemark skiing rafting arena football rodeo blackball (pool)
mud bogging nordic skiing kayaking canadian football reining trick shot
motocross ski touring eanocing amecrican football gowboy action shooting eight-ball
grand prix motorcycle racing skijoring adventure racing women's lacrosse bull riding straight pool

©IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Karpathy, Andrej, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. "Large-Scale Video Classification with
Convolutional Neural Networks." 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)
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Overview

* Limitations
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Even the Best have Issues

Microsoft won the most recent ImageNet competition and currently holds the
state-of-the-art implementation

They can recognize 1000 categories of images, extremely reliably.

However:

1000 categories does not cover as many objects as you might expect.

Uses 1.28 million images to train

Takes weeks to train on multiple GPUs, with heavy optimization

http://arxiv.org/abs/1512.03385
76
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correct +distort ostrich
Courtesy of Szegedy, Christian et al. License: CC-BY.

Szegedy et al. Intriguing Properties of Neural Networks. 2014.
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\
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Fitness Evaluation :
Mutation

\

'3‘5 Evolved images \\ A
2 O
s
T Evolutionary - Crossover
; Algorithm
Q.
& >0, 2
Label and Score
Selection
Output

©IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.
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Gradient Ascent

backpack cliff dwelling

soccer ball stopwatch Windsor tie

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/.

Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.
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Indirect Encoding
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Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.
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Discriminative

Generative
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: . The instincts had no bounds.
N The colours, shapes,
N} smells, patterns and
X sensations which formed

Instead of sToF ing at a 'sweet spot’, the instinctive
response wou (f still be produced by unrealistic stimuli.

.they could create greatly exaggerated dummies which

animals would choose instead of a redlistic altern

Tinber'gen succeeded
in isolating the traits
which Trigggred

certain instincts...

© Stuart McMillen. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Takeaways

Deep Learning is a powerful tool that relies on many
iterations of processing

CNNs outperform all other algorithms for image classification
because of the image processing power of convolutional
filters

Backpropagation is used to efficiently train CNNs

CNNs need tons of data and processing power
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Getting Started With Deep Learning

L2

TensorfFlow
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Appendix



Backward Propagation of Errors

- The gradient of weights and bias can be found by back chaining the auxiliary
variable, defined as:

_oc z L 11 g
0 = 94l % = 2ok W@y~ T b3 al = O‘(ZZ)
J
- By chain rule:
oC
(S;,E = W(f (ZJL) 6L == VaC @ OJ(ZL) 4 aid
J

- The back propagate it (chain rule again):

' = (w76 @ 0'(2)



Backward Propagation of Errors (put it together)

Summary: the equations of backpropagation
(51‘ — v”(’ (+) UI(CL)

3 = ((,u,l+l)T(5l+l) 0 0”(:,)
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Train the Network (put it together)



© Tim Dettmers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
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Convolution: Filters

An output pixel’s value is some function of the corresponding input pixel’s

neighbors 0 0 0 0|0 0 0 0 O

Examples: o /0 O 0 o0 0 0 0 O

0O O O 0 |0 |0
Smooth, sharpen, contrast, shift 0 100

O 0O [0 (90|90 90 90 90 90

Enhance edges
O O [0 90 90 90 90 90 90

Detect particular orientations

O 0 0 90 90 90 90 90 90
1 1 1 |
Apr Convolution O 0 0 90 90 90 90 90 90
1 1 1
o0 0 0. !0 0 0 0 O
1 1 1 0 0 9\ 0O 0 0 0 0 O
1/9 =40
0 0




Convolution for 2D matrices

Given two three-by-three matrices, one a kernel, and the other an image piece,
convolution is the process of multiplying entries and summing

a b c 1 2 3
[d € f] * [4 5 6] = (1#2)+(24k)+(3g) + (4% f) +{5xe)+ (6xd) + (T4c) + (B2b) + (Bxa)
g k i| |78 9

The output of this operation constitutes the input to a single neuron in the following
layer.
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