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Definition

* Reachability is the task of figuring out what states a dynamical system
could possibly reach.
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Motivation

* Reachability analysis is primarily used for verification.

* Generally, we test for intersection between the reachable set and a
set of bad states.
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Motivation (continued)

* Reachability is used for robust motion planning.
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Reachability on Finite State Machines

«S=(X,U,T)
* X is the finite set of states
* U is the finite set of control inputs
e T: X XU — X is the transition function

* X,: set of initial states




Reachability on Finite State Machines

* R(Xy,t): the reach set at time t is the
set of states x for which there exists a
sequence of control inputs ug, .., U1  R(X,, 4)
that would take us from a state x; € X
0= 79 R(Xo,3)

to state x.
R(Xy,2)
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Reachability on Finite State Machines

* R(Xy,t): the reach set at time t is the
set of states x for which there exists a
sequence of control inputs ug, .., U1  R(X,, 4)
that would take us from a state x; € X
0 0 R(XOJB)

to state x.
R(Xy,2)
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Reachability on Finite State Machines

* R(Xy,t) = Uger R(Xy, ) is the
reachable set at time t.
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Reachability on Finite State Machines

* R(Xy,t) = Uger R(Xy, ) is the
reachable set at time t.
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Reachability on Finite State Machines

* R(Xp,t) = Us<e R(Xo,s) is the
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Reachability on Finite State Machines

* R(Xy,t) = Uger R(Xy, ) is the
reachable set at time t.
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Reachability on Finite State Machines

* R(Xy,t) = Uger R(Xy, ) is the
reachable set at time t.
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Computing reach sets
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U= {E, N}
R(X,y,2) = R(R(Xy,1),1)

U= {E, N}
R(oné 1)

U={E, N}

R(Xy,2) =7



Computing reach sets

* This works because reach sets are semi-groups: R(X,,s +t) = R(R(X,,s), t)

RO DR
+++++++

U = {E, N}
R(Xy,2) = R(R(Xy, 1), 1)

U= {E, N}
R(oné 1)

U={E, N}

R(X,,2) =7



Continuous Systems

*In an FSM, we could represent reach sets as finite sets.

*In a continuous system, a reach set will be a region of the state space,
so we need a symbolic representation.
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Convex polytopes

* Two canonical representations:
* Vertices: polytope = convex_hull(vertices)
* Inequalities: polytope = N(solutions to inequalities)
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Convexity

* For every pair of points within the region, every point on the straight
line segment that joins the pair of points is also within the region.

Convex Non-convex
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Ellipsoids

* An arbitrary ellipsoid can be represented with the following:
x—v)TA(x—-v)<1
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Closure under linear operators

* Let P be a convex polytope (resp. ellipsoid), then: AP = {Ax : x € P}
is also a convex polytope (resp. ellipsoid).
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Closure under linear operators

* This means that for a system defined by x;,1 = Ax;, or linear system
defined by x(s) = Ax(s) + u(s)*, if we start with a convex X,, then
the R(X,, t) will also be convex.

A\ P >
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Closure under linear operators

* This means that for linear systems defined by x;,1 = Ax; or
x(s) = Ax(s) + u(s)*, if we start with a convex X, then the
R(X,, t) will also be convex.

A\ P >

* Requires U and X, to be convex and compact, where u(s) € U.
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Closure under linear operators

e Even if the reach set is convex, the reachable set R(X, t) is not
necessarily convex, but it will be a union of the convex polytopes
(resp. ellipsoid).
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Closure under linear operators

e Even if the reach set is convex, the reachable set R(X, t) is not
necessarily convex, but it will be a union of the convex polytopes
(resp. ellipsoid).
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Closure under linear operators

* Even if the reach set is convex, the reachable set R(Xj, t) is not
necessarily convex, but it will be a union of the convex polytopes
(resp. ellipsoid).
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Closure under linear operators

* Even if the reach set is convex, the reachable set R(Xj, t) is not
necessarily convex, but it will be a union of the convex polytopes
(resp. ellipsoid).
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Closure under linear operators

* Even if the reach set is convex, the reachable set R(Xj, t) is not
necessarily convex, but it will be a union of the convex polytopes
(resp. ellipsoid).
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Outline

e Reachability and representing reach sets
e Applications - robust motion planning

e Computing reach sets
o Flow Tubes
o Funnels
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Applications



Robust motion planning

Controlling complex systems

Aircraft collision avoidance
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Robust motion planning
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Robust motion planning
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Robust motion planning
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Robust motion planning
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Robust motion planning

START

* Environmental disturbances

(wind)

- Modeling errors
- State uncertainty
'« -+ Randomness in initial conditions



Robust motion planning

Environmental disturbances
(wind)

Modeling errors

State uncertainty

Randomness in initial conditions

START

Robustness goal: Need to guarantee (with some confidence) that the system
reaches a goal state and does not reach any states insides the obstacle sets
under uncertainty
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Timeline:
e Bradley and Zhao, 1993; Frazzoli, 2001 - Flow tubes

Initial State Set
Trajectory Set

X Goal State Set
e —

* Hoffman and Williams, 2006 - Flow tubes with temporal constraints

* Tobenkin, Manchester, and Tedrake, 2011; Majumdar and Tedrake,
2012 - Funnels
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Motion planning with funnels

* (Generate regions of finite time invariance (“funnels”)
subjected to a general class of uncertainty
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Motion planning with funnels
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Motion planning with funnels
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Motion planning with funnels
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Motion planning with funnels
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Motion planning with funnels
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Motion planning with funnels
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Reachability analysis can help distinguish between “intuitively less risky”
paths from actual “safe” paths
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Online planning with funnel
ibraries

Not all information about the environment is known before
hand

Cannot perform expensive computations during runtime

Create libraries of funnels offline — one for each possible
trajectory
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Online planning with funnel
ibraries
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Online planning with funnel
ibraries

Problem reduces to finding a sequential composition of funnels

to avoid obstacles



Sequential composition
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Online planning
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Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2
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Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x

4. Check if P collides with any of the

¢ @
obstacles
. ®
5. If collision s
L 4
P = ReplanFunnels(x, O) <P 4
6. Apply control corresponding to P and x < =
&}

A 4

7.Goto 2

87



Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

88

¢ @
o
s 0 ®
L 4
0‘.
¥ A

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

89

¢ @
o
s 0 ®
L 4
0‘.
¥ A

A 4



Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

90

A 4



Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

91

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

92

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

93

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

94

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

95

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

96

A 4




Online planning

1. Initial planned funnel sequence, P
2. Update obstacles information, O
3. Get current state of robot, x
4. Check if P collides with any of the
obstacles
5. If collision
P = ReplanFunnels(x, O)
6. Apply control corresponding to P and x

7.Goto 2

97

A 4
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Flow Tubes from Trajectories

Initial State Set
Trajectory Set

Goal State Set
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Flow Tube Approximations
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Polytopes, Ellipsoids, Rectangles used for cross section inner approximations
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Robust Planning with Flow Tubes

Plan a trajectory from initial to goal state
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Robust Planning with Flow Tubes

Disturtéance :
i ey drgp}aﬁea ............................. i ..................
trajedtory :

Robust to disturbances within the flow tube
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Robust Planning with Flow Tubes

Framework allows temporal planning between flow tubes
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Humanoid Footstep Planning with Flow Tubes
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Humanoid Footstep Planning with Flow Tubes
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Understanding Funnels

* Goal: find the region that guarantees safety under the given bounded uncertainty
*  Funnels are composed regions of finite time invariance around a trajectory for all time.
* Inpractice, tradeoff between guarantees and computation time

*  Benefit:

g. = P!ar}ned g
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Funnel Computing Example: System Model

System Model

X vir)cos y w(r)
x y | v(r) .?m W + 0

v ¥ 0

v u 0

i = f(x, t,w(x, t))

Bounded Uncertainty

v(r) € 19.5,10.5|m/s
w(r) €|-0.3,0.3m/s]|

Anirudha Majumdar and Russ Tedrake, "Robust Online Motion Planning with Regions of Finite Time Invariance”
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Funnel Computing Example: Nominal Trajectory

Nominal Trajectory

xi(0) and x;(T;)

J= L ir'|| b ug(1)" R(t)up(r)) dt }

—f
Optimal Control Law —_—
e ]

=2 A (0)x(t) + Bi()i(r) + Di()w(r) w(t)

e

% =x—uxit)

i — u—ut) T

@t (x,t) — =R 'B;(1)"S:i(1)x

—Si(t) — @+ Si()A:(r) + Ai(r)" Si(r) — Si(0) [Bi(1)R ' Bi(r)" - %ni(f}ﬂ:‘(f}rl&{f]
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Funnel Computing Example

Computing Funnel
Vi(x,1) = (x —x(1))" Sie) (x — (1))
Xo = {x|V(x,1) < p(0)}
minimize p(0)

p0)x
subject o p(0) =V (x,0) + T(Vyes(x) = 1) = 0

>0

115
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Funnel Computing Example: Ellipse

Computing Funnel

Vi(x,1) = (x—=x(1))" Sie) (x — (1))

Xo = {x|V(x,1) < p(0)}

mi’:}i:}'tim p(0) ’
subject to  p(0) — V(x,0) + t(Vyeu(x) = 1) = 0 Q

>0
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Importance of Lyapunov Functions

Used to verify stability of a system

V' is positive definite

V(z) <0forall z#0, V(0) =0
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Ellipsoid: Quadratic Lyapunov Functions

» Funnels defined by
Quadratic Lyapunov
Functions

« Evaluate the function
at the points in the cloud

« To be out of collision,
result must be greater
than 1

Quadratic Lyapunov Function
V,(X] =X5,% s S8, 3 ]
I

Where X = U =X — X

-
e
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Flying Through Forest: Path Planning

120

 Sequentially planned
funnels in the sensed
environment

e Path computed in
increments of 5 meters,
the length of each funnel



Flying Through Forest: Guaranteed Safety!
| “tf_'
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Algorithm 1 Online Planning

1: Initialize current planned funnel sequence, &2 = {F},F,...,F,}
2: fort=0,... do

9.

10:
11:

BRI Whisee

¢ < Obstacles in sensor horizon
x <= Current state of robot
Collision <= Check if # collides with & by solving QPs (7)
if Collision then
P < ReplanF unnels(x, ©)
end if
F.current <= F; € &2 suchthatx € F;
t.internal <= Internal time of F.current
Apply control u;(x,t.internal)

12: end for
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