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• Consider a self-driving car…

Motivation

• Regardless of our destination, we also 
want to make sure we always follow the 
rules of the road.
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Motivation
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Motivation



Key Takeaways

• Modeling temporally-extended goals with 
linear temporal logic (LTL)

• Modeling preferences between alternative 
plans
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Outline

• Introduction to Linear Temporal Logic
–Why use Linear Temporal Logic?
–Linear Temporal Logic Operators
–Example LTL Problems

• Applications to Planning

• Planning with Preferences
–Expressing Preferences
–Planning in LPP
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Linear Temporal Logic
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Temporal Logic

• Formalism for specifying properties of systems 
that vary with time
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Temporal Logic

• Systems proceed through a sequence of 
discrete states
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Why Temporal Logic?
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•Previously our planning algorithms have used 
propositional logic to specify goals dealing with a 
single state at a single point in time

•Temporal logic allows these goals to be 
specified over a sequence of states
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Why Temporal Logic?

• What if the problem requires a condition to:

–Be met until another condition is met...
•For example: red implies (stop until green)
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Why Temporal Logic?

• What if the problem requires a condition to:

–Always eventually be met
•For example, always have some point in 
the future when you visit a gas station
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Branching vs linear time

Temporal Logic
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• Linear time
– Models physical time
– At each time instant, only one of the future 

behaviors is considered
– We can reason about always



Branching vs linear time

Temporal Logic
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• Branching time
– At each time instant, all possible future 

behaviors are considered
– Time may split into alternate courses
– We can reason about possibilities



Branching vs linear time

Temporal Logic
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• Branching time

• Linear time



Linear Temporal Logic

• Forward-looking conditions
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• Linear Temporal Logic (LTL) involves:
• Linear time model
• Infinite sequences of states

• Cannot express properties over a set of different paths
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Applications of Temporal Logic

•Temporal logic is used in:
–Verification and Model Checking

•Safety and Maintenance
–Planning
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LTL Syntax

1. Propositional variables: p, ρ, ϕ, ω etc.–Can be True or False
2. Logical Operators: ¬, ∨, ∧, →, ↔, True, False

–¬ = not
–∨ = or
–∧ = and
–→ = implies 
–↔ = if and only if
–True, False

An LTL formula is built from:

LTL formula f := true | pi | fi ∧ fj | ¬ fi | X fi | fi U fj
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Logical Operator Examples

26

Logical Operators Example

true true

Logical Operators Example

p = true R = red light
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Logical Operator Examples
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Logical Operators Example

not, ¬ ¬ G = green light

Logical Operators Example

and, ∧ R ∧ B = gas station

^
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Logical Operator Examples
Logical Operators Example

or, ∨ R ∨ G 
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Or (∨) can be rewritten with and (∧) and not (¬)
R ∨ G = ¬(¬R ∧ ¬G)

Similar process can be done for implies and iff, but 
we won’t be explaining them due to time constraints



LTL Syntax

1. Propositional variables: p, ρ, ϕ, ω etc.–Can be True or False
2. Logical Operators: ¬, ∨, ∧, →, ↔, True, False

–¬ = not
–∨ = or
–∧ = and
–→ = implies 
–↔ = if and only if
–True, False

3.Temporal Operators
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An LTL formula is built from:

LTL formula f := true | pi | fi ∧ fj | ¬ fi | X fi | fi U fj



Temporal Operators

What are some useful operators we may want 
to describe our car?
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Temporal Operators

• The next light to be green

• The light will be red until it is green

• The light will eventually, at some point in the 
future, turn green
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Temporal Operators

• The light will always be red

• The light will be red until the car gets gas and 
the state after it’s released, the light can be 
whatever
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Next
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Operator Textual Operator

neXt Xρ

Definition: Variable ρ must be true in the next state



Until
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Operator Textual Operator

Until ρUω

Definition: Variable ρ must remain true up until the 
state where variable ω becomes true, at which point 
ρ becomes unconstrained

Note that ω is required to become true in some future state



Future
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Operator Textual Operator

Future/Eventually Fρ    

Definition: Variable ρ must become true in some 
future state



Global
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Operator Textual Operator

Globally Gρ   

Definition: Variable ρ must be true in all future 
states



Release
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Operator Textual Operator

Release ρRω 

Definition: Variable ρ must be true up until and including the 
state where ω becomes true, after which ω is unconstrained. If ρ 
is not true in any future state, then ω is true in all future states

Different from U in that both ρ and ω are true in one state



Which describe the other?
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≡ True U ρ
≡ ¬F¬ρ
≡ ¬(¬ρ U ¬ω)

Future/Eventually

Release

Globally

?

?

?



Which describe the other?
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≡ True U ρ
≡ ¬F¬ρ
≡ ¬(¬ρ U ¬ω)

Future/Eventually

Release

Globally



Temporal Operators (Recap)
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Operator Textual Operator

neXt Xρ

Until ρUω

Future/Eventually Fρ    ≡ True U ρ

Globally Gρ   ≡ ¬F¬ρ

Release ρRω ≡ ¬(¬ρ U ¬ω)



Combination of Operators

Infinitely Often

Eventually Forever
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Example Problem

What are some true statements about this LTL 
formation?
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^

• XR
• FG
• RUG
• (RUG)∧(FG)∧(XR)



Expressing Temporal Logic in PDDL

PDDL3 Goal Description
<GD> ::= (at end <GD>) 

| (always <GD>) 

| (sometime <GD>) 

| (within <num> <GD>) 

| (at-most-once <GD>) 

| (sometime-after <GD> <GD>) 

| (sometime-before <GD> <GD>) 

| (always-within <num> <GD> <GD>) 

| (hold-during <num> <num> <GD> | …
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Temporal Operators
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Operator PDDL3

neXt Xρ (within 1 ρ)

Until ρUω (always-until ρ ω)

Future ρFω (sometime-after ρ ω)

Globally Gρ   (always ρ)

Release ρRω (or 

(always ω)
(always-until ω ρ))



(:goal (within 1 (turn red)))

•The traffic light will turn red in the next state

Expressing Temporal Logic in PDDL
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Xr

t

Command Syntax
(within <num> <GD>)

(within <num> φ) would mean that φ must hold within 
<num> happenings

t+1



Expressing Temporal Logic in PDDL

• The traffic light will be green until it turns red at 
which point it will be red forever

(g U r) ∧ (r → Gr)
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t0 ti+1t1 ti

...
gUr

ti+2 t∞

...

(:goal 

(and 

(always-until (turn green) (turn 

red))

(implies (turn red) (always (turn red))) 

))



Application to Planning
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Büchi Automata

Büchi Automata - extension of finite automaton to 
infinite inputs (words)

A Büchi automaton is 5-tuple <S, s0, T,  F, Σ>
• S is a finite set of states

• s0 ∈ S is an initial state

• T ⊆ S × Σ → S is a transition relation

• F ⊆ S is a set of accepting states

• Σ is a finite set of symbols (‘alphabet’)

An infinite sequence of states is accepted iff it visits 
the accepting state(s) infinitely often
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Example Büchi Automata

Example: Model a clock

Accepted words:
TickTockTockTickTockTickTickTickTock...

TockTickTockTickTickTockTockTickTock...
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Example Büchi Automata
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Example: Model a clock

Accepted words:
TockTickTickTickTickTickTickTick...



Example Büchi Automata
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Example: Model a clock

Accepted words:
TockTickTockTickTockTickTockTick...



LTL to Büchi Automata

s1s0

45

neXt?

Future/Eventually?

Globally?



LTL to Büchi Automata
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Future - Fp  ≡  True U p

Accepted word:  ¬p ¬p ¬p p p ¬p …
Sequence of states: s0 s0 s0 s1 s1 s1...

Globally - Gp   ≡   ¬F¬p

Accepted word: p p p p p….
Sequence of states: s0 s0 s0 s0 s0...

s1s0

s0 s1



LTL to Büchi Algorithm  
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Progression Algorithm

progress(f,N, Δt = 1)  #Δt is time between successive states
if f  contains no temporal qualities:

if  N.curr entails f:
f’ = True

else
f’ = False

if  f  =  f1 ∧ f2:
progress(f1, N, Δt) ∧ progress(f2, N, Δt) 

if  f  =  Xf1:
N.next.append(f1)

if  f  =  f1 U[a,b] f2: #[a,b] is a time interval that could be infinite
if  b < a:

f’ = False
else if 0 ∈ [a,b]:

progress(f2, N, Δt) ∨ (progress(f1,N, Δt) ∧ N.next.append(f1 U[a,b] - Δt

f))
else

progress(f1,N, Δt) ∧ N.next.append(f1 U[a,b] - Δt f)
48



Büchi Automata to PDDL2

Büchi states are not equivalent to PDDL2 states. Consider:

FutureGlobally - FGp

Two ways to transform temporally extended goals to PDDL2:
• Create new actions that encapsulate the allowable transitions 

in each state
• Introduce derived predicates

– Do not depend on the actions
– Used to determine which state the planner is in
– Goal of the planner is to move from initial state to any 

accepting state
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Planning with Preferences

50



Preference Based Planning

Classical Planning Problem

problem := (S, s0 , A, G) 
S - set of states     s0 - initial state     A - set of operators     G - set of goal states

Preference-based Planning Problem

problem := (S, s0 , A, G, R)
R is a partial or total relation expressing preferences (≼) 

between plans

Preferences express properties of the plan 
that are desired but not required
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Preference Expression Languages

• Quantitative - assign numeric values to plans to compare them
– Markov Decision Processes (MDP’s)

• Find preferred policy using a reward function over conditional plans

– PDDL3

• Preferences expressed through reward function based on satisfying/violating 

logical formulas on the plan

• Qualitative - relations compare plans based on properties of the 
plans that need not be numeric
– Ranked  Knowledge Bases

• Plan properties are ranked with preferred formulas ranked higher

– Temporally Extended Preferences

• Use LTL to express plan properties that are then ranked

Quantitative languages imply total comparibility while qualitative 

languages may allow incomparability
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Expressing Preferences in PDDL3

Syntax for modeling preferences:
(preference [name] <GD>) - label for fluents that 

represent preferences

is-violated - function that returns the number of times the 
preference was not satisfied in the plan

Example:
Traffic light is green until it turns red
(preference gUr

(always-until(turn green) (turn 

red)))

Plan tries to not violate any preferred fluents
(metric minimize (is-violated gUr))
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LPP Language Overview

• LPP is a quantitative language to express 
temporal preferences for planning

–Preferences between different temporal goals 
can be expressed along with the strength of 
preference

• i.e. Goal A is preferred twice as much as Goal B

• LPP is an extension of an older language PP
• Preference formulas in LPP are constructed 

hierarchically

See Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. "Planning with Qualitative Temporal 
Preferences." KR 6 (2006): 134-144.
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Constructing a Preference 
Formula

Basic Desire Formula (BDFs)
express temporally extended propositions

• At some point, will cook
– b1=F(cook)

• At some point, will order takeout
– b2=F(orderTakeout)

• At some point, will eat spaghetti
– b3=F(eatSpaghetti)

• At some point, will eat pizza
– b4=F(eatPizza)
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Constructing a Preference 
Formula

Atomic Preference Formulas (APFs)
express preferences between BDFs

• In this example, weights associated with each 
BDF define preferences

–Lower weight is preferred

• Prefer to cook over ordering takeout
– a1=b1[0.2]≫b2[0.4]

• Prefer eating spaghetti over eating pizza
– a2=b3[0.3]≫b4[0.9]
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Constructing a Preference 
Formula

General Preference Formulas (GPFs)
allow conjunctions or disjunctions of APFs or  

qualification of BDFs with conditionals

•Satisfy the most preferred option among the 
APFs (satisfy APF with lowest weight)

–g1=a1 | a2
• Choose the most preferred option that 

satisfies both APFs (minimize the maximum 
weight across both APFs)

–g2=a1 & a2
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Constructing a Preference 
Formula

Aggregated Preferences Formulas (APFs)
define the order in which preferences should be 

relaxed

• Prefer that if both g1 and g2 from previous 
slide can’t be met, that g2 from previous slide is 
met

–g1 ∧ g2 ≼ g2 ≼ g1

•Situations that aren’t distinguished any other 
way can be sorted lexicographically 
(alphabetically)
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LPP Formula Hierarchy Review

• Basic Desire Formula (BDF)
–Express temporally extended propositions

• Atomic Preference Formula (APF)
–Express preferences between BDFs

• General Preference Formula (GPF)
–Allow conjunctions or disjunctions of APFs or  

qualification of BDFs with conditionals

• Aggregated Preference Formula (APF)
–Define the order in which preferences should be 

relaxed
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Solving Planning Problems with Preferences

• PPLAN
– implemented by Meghyn Bienvenu, Christian Fritz, and 

Sheila A. McIlraith

• Solves planning problems with preferences 
expressed in LPP via bounded best-first search 
forward chaining planner
– use of progression efficiently evaluates how well partial 

plans satisfy Φ (a general preference formula)
– use of admissible evaluation function ensures best-first 

search is optimal

62



Quick Definitions

• Forward Chaining Planner - Forward chaining starts with 
the available data and uses inference rules to extract 
more data (from an end user, for example) until a goal
is reached.

• A situation s is a history of the primitive actions a ∈ A 
performed from an initial situation S0.
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https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Goal


Progression

• Purpose of progression:
– take in a situation and temporal logic formula (TLF)
– evaluates the TLF with respect to the state of the 

situation
– generates a new formula representing those aspects 

of the TLF that remain to be satisfied in subsequent 
situations.

• Weight of general preference formula with respect to a 
situation is equal to progressed preference formula with 
respect to final situation 
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Evaluation Function

• Evaluation Function
– has optimistic and pessimistic weights to provide 

best and worst weights on a successor with respect 
to Φ.

– the optimistic weight is non-decreases and does not 
over-estimate the actual weight

– this allows PPLAN to define an optimal search 
algorithm
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PPLAN Algorithm

optW = optimistic weight (Assumes all unfulfilled preferences 
are fulfilled)

pessW = pessimistic weight (Assumes all unfulfilled 
preferences are not fulfilled)

Algorithm
L = list of nodes sorted by optW, then pessW, then length

while L is not empty
Remove first node from L
If goal is achieved and optW = pessW

return partial plan, optW
Perform Progression
Add new nodes to L and sort
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PPLAN

• PPLAN is implemented with a
–general preference formula fΦ they define is 

admissible and when used in best first 
search, the search is optimal

–the best first search searches through the 
partial plans based on their weights

–for full details see paper "Planning with 
Qualitative Temporal Preferences" by Fritz, 
Christian, Sheila A. McIlraith, and Meghyn 
Bienvenu.
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Additional Examples were taken from 
the youtube videos of NOC15 July-
Oct CS12 : 
https://www.youtube.com/watch?v=W5Q0DL
9plns
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https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ
https://www.youtube.com/channel/UCUXDMaaobCO1He1HBiFZnPQ
https://www.youtube.com/watch?v=W5Q0DL9plns
https://www.youtube.com/watch?v=W5Q0DL9plns


Example Formulations
• Traffic light is red: r
• Traffic light is green: g

• The traffic light will turn red in the next state
– Xr

• The traffic light will be green until it turns red 
but it may not ever turn red
– (g U r) ∨ Gg  (Weak Until)

• The traffic light will be green until it turns red 
at which point it will be red forever
– (g U r) ∧ (r → Gr)
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Additional Examples
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