
courtesy of JPL

Programs that Monitor Hidden State:
Mode Estimation and
Conflict-directed A*

Brian C. Williams
16.412J / 6.834J

February 8th, 2016
Brian C. Williams, copyright 2000

This image is in the public domain.
1

Today’s Assignments
Problems Sets:
• Problem Set #1, Out today, due Wed, February 17th.

Readings:
• Today: B. C. Williams, and R. Ragno, "Conflict-directed A* and its Role in

Model-based Embedded Systems," Special Issue on Theory and Applications
of Satisfiability Testing, Journal of Discrete Applied Math, January 2003.

• Wednesday: Same.

Background:
• 16.410/13 Lectures on Informed Search, Constraint Satisfaction, Propositional

Satisfiability and Diagnosis.

2

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Outline

• Programs that monitor
and control hidden states.

• Consistency-based Diagnosis

3

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Base Station

Program sequence of actions in RMPL

method run() {

sequence {

uav.launch();

uav.fly_to_base_station();

uav.pick_up_med_kit();

uav.fly_to_hikers();

uav.drop_off_med_kit();

}

}

Actions have preconditions &

effects like before

Programs that Monitor State

4

2/9/15 16.412J/6.834J S16: L2 Monitoring Hidden State

A Traditional Reactive
Programming Language

Expressions:
1. s Conditions on sensors
2. u Assignments to control variables

Control constructs:
1. u

2. If s next A
3. Unless s next A
4. A, B
5. Always A

where A, B are programs.

Action Model: PDDL

Control assignments
Conditional execution
Preemption
Full concurrency
Iteration

5

sense
P(s)

WORLD

observations actions

AGENT

Self-Repairing Agent:

• Monitors & Diagnoses

• Repairs & Avoids

• Probes and Tests

Plant

act

Symptom-directed

Programs that Monitor and Control Hidden (Failure) States

6

10/24/11 copyright Brian Williams, 2000-2012

engine to standby

planetary approach

separate

lander

switch to

inertial nav rotate to entry-orient

& hold attitude

Switch navigation mode:

“Earth-relative” = Star Tracker + IMU

Switch navigation mode:

“Inertial” = IMU only

Mission Storyboards
Specify Evolving States

7

engine to standby

Rotate spacecraft:

• command ACS to entry orientation

planetary approach

separate

lander

switch to

inertial nav rotate to entry-orient

& hold attitude

Mission Storyboards
Specify Evolving States

8

Like Storyboards, Model-based Programs
Specify the Evolution of Abstract States

Embedded programs evolve actions

by interacting with plant sensors

and actuators:

• Read sensors

• Set actuators

Embedded Program

S

Plant

Obs Cntrl

Model-based programs evolve

abstract states through direct

interaction:

• Read abstract state

• Write abstract state

Model-based

Embedded Program

S

Plant

Model-based executive maps

between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Programmer maps between state

and sensors/actuators.
9

Model-based Programming
of a Saturn Orbiter

Turn camera off and

engine on

EngineA EngineB

Science Camera

OrbitInsert()::

do-watching (EngineA = Thrusting OR

EngineB = Thrusting)

parallel {

EngineA = Standby;

EngineB = Standby;

Camera = Off;

do-watching (EngineA = Failed)

{when-donext (EngineA = Standby) AND

Camera = Off)

EngineA = Thrusting};

when-donext (EngineA = Failed AND

EngineB = Standby AND

Camera = Off)

EngineB = Thrusting}

10

10/24/11 copyright Brian Williams, 2000-2012

The program assigns EngineA = Thrusting,
and the model-based executive

Determines that valves

on the backup engine B

will achieve thrust, and

plans needed actions.

Deduces that a valve

failed - stuck closed

Plans actions

to open

six valves

Fuel tankOxidizer tank

Deduces that

thrust is off, and

the engine is healthy

Prog: EngineB = Thrusting

11
10/24/11 copyright Brian Williams, 2000-2012

Plant Model:
Probabilistic Constraint Automata (PCA)

Standby

Engine Model

Off

Failed

Firing

component modes…

(thrust = full) AND

(power_in = nominal)

(thrust = zero) AND

(power_in = zero)

(thrust = zero) AND

(power_in = nominal)

described by finite domain constraints on variables…

guarded deterministic and probabilistic transitions

off-

cmd
standby-

cmd

0.01

0.01

standby-

cmd

fire-

cmd

cost / reward & prior distribution

0 v

0 v

2 kv

2 kv

one per component … operating concurrently

On

Camera Model

Off

turnoff-

cmd
turnon-

cmd

(power_in = zero) AND

(shutter = closed)

(power_in = nominal) AND

(shutter = open)

0 v

20 v

0.01

0.01

0 v

[Williams & Nayak 95,
Williams et al. 01]

1210/24/11 copyright Brian Williams, 2000-2012

A Reactive Model-based
Programming Language (RMPL)

Idea: A concurrent constraint language (e.g. TCC/HCC [Saraswat et al.])
• whose constraints c operate on the state of the plant s, and
• replaces the constraint store with a model-based controller:

1. c[s]

2. If c[s] next A
3. Unless c[s] next A
4. A, B
5. Always A

Action Model:
Probabilistic
Constraint
Automata

Primitive constraint on state
Conditional execution
Preemption
Full concurrency
Iteration

13

Control Sequencer

Deductive Controller

System Model

CommandsObservations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Generates target goal states

conditioned on state estimates

Mode

Estimation

Mode

Reconfiguration

Tracks

likely

plant states

Tracks least

cost goal states

 Executes concurrently

 Preempts

 Queries (hidden) states

 Asserts (hidden) state

OrbitInsert()::

(do-watching ((EngineA = Firing) OR

(EngineB = Firing))

(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND

(Camera = Off))

(EngineA = Firing)))

(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND

(Camera = Off))

(EngineB = Firing))))

Closed

Valve

Open
Un-

known

Stuck

closed

Open Close

0. 01

0. 01

0.01

0.01

inflow iff outflow

1410/24/11 copyright Brian Williams, 2000-2012

Deductive Controller

Commands
Observations

Plant

State goalsState estimates

Mode

Estimation:

Tracks likely

States

Mode

Reconfiguration:

Tracks least-cost

state goals

Optimal CSP:

arg min f(x)

s.t. C(x) is satisfiable

D(x) is unsatisfiable

arg min Pt(Y| Obs)

s.t. Ψ(X,Y)  O(m’) is consistent

arg max Rt(Y)

s.t. Ψ(X,Y) entails G(X,Y)

s.t. Ψ(X,Y) is consistent

s.t. Y is reachable

Mode Reconfiguration:

Select a least cost set of commandable

component modes that entail the current

goal, and are consistent.

Mode Estimation:

Select a most likely set of next

component modes that are consistent

with the model and past observations.

15

Outline

• Programs that monitor and control
hidden states.

• Consistency-based Diagnosis

16

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Estimating Failure Modes Requires Reasoning

from a Model: STS-93
Symptoms:

• Engine temp sensor high

• Oxygen level low

• Guidance detects low thrust

• Hydrogen level possibly low

Problem: Liquid hydrogen leak

Effect:

• LH2 used to cool engine

• Engine runs hot

• Consumes more LOX

This image is in the public domain.
17

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Model-based Diagnosis
Input: Observations of a system with symptomatic behavior,

and a model Φ of the system.

Output: Diagnoses that account for the symptoms.

1 Symptom1

0

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A1

X1

18

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

How Should Diagnoses
Account for Novel Symptoms?

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make
no presumption about faulty component behavior.

1

0

1 SymptomA

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A2

A3

X1

X2
[Davis, 84]

[Geneserth, 84]

[deKleer & Brown, 83]

19

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Issue 3: Multiple Faults Occur

• three shorts, tank-line and
pressure jacket burst, panel
flies off.

Diagnosis = Mode Assignment
Solution: Divide & Conquer

courtesy of NASA
APOLLO 13

This image is in the public domain.

20

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Solution: Identify all Combinations
of Consistent “Unknown” Modes

• Candidate: Assignment of G or U to each component.

And(i):
 G(i):

Out(i) = In1(i) AND In2(i)
 U(i): No Constraint

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A2

A3

X1

X2

21

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Solution: Identify all Combinations
of Consistent “Unknown” Modes

• Candidate: Assignment of G or U to each component.
• Diagnosis: Candidate consistent with model and observations.

And(i):
 G(i):

Out(i) = In1(i) AND In2(i)
 U(i): No Constraint

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A3

X1

1

0

1

22

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Mode Estimation
Given:
 Mode, State, Observation Variables: X, Y, and O Y
 Obs = assignment to O
 Model: Φ(X,Y) = components + structure

And(i):
G(i):

Out(i) = In1(i) AND In2(i)
U(i): No Constraint

• All behaviors are associated with modes.
• All components have “unknown Mode” U,
whose assignment is never mentioned in any
constraint.

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A3

1

X1

0

1

Return: All mode estimates

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

M,obs  {X  DX | Obs(X,Y) is satisfiable}

23

Models in Propositional State Logic

And(i):
 G(i):

Out(i) = In1(i) AND In2(i) i=G  {[In1(i)=1 ∧ In2(i)=1] iff Out(i)=1}
 U(i): No Constraint

Or(i):
 G(i):

Out(i) = In1(i) OR In2(i) i=G  {[In1(i)=1  In2(i)=1] iff Out(i)=1}
 U(i): No Constraint

X {1,0} X=1  X=0 (i=G)  (In1(i)=1)  Out(i)=1
[X=1 ∧ X=0] (i=G)  (In2(i)=1)  Out(i)=1

(i=G)  (In1(i)=0)  (In2(i)=0)  Out(i)=0

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State 24

Outline

• Programs that monitor and control
hidden states.

• Consistency-based Diagnosis
– Encoding diagnoses compactly using kernels.
– Using conflicts to divide and conquer.

25

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Need Compact Encoding

And(i):
G(i):

Out(i) = In1(i) AND In2(i)
U(i): No Constraint

A

B

C

D G0 1
1E Z1 A3

1

1

1

F
X

Y

0
A1

X1

1

0

D,obs  {X  DX |Y  DX st Obs(X,Y)}

As more constraints are relaxed, candidates are more easily satisfied.
Typically an exponential number of diagnoses (mode estimates).

How do we encode solutions compactly?

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

26

Partial Diagnosis

{A1=U, A2=U, X2=U}

Partial Diagnoses

Partial Diagnosis:

A partial mode assignment M,
all of whose full extensions are diagnoses.

• M “removes all symptoms.”

?

?

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A3

X1

1

0

1

Diagnoses with common assignments:

{A1=U, A2=U, A3=G, X1=G, X2=U}

{A1=U, A2=U, A3=G, X1=U, X2=U}

{A1=U, A2=U, A3=U, X1=G, X2=U}

{A1=U, A2=U, A3=U, X1=U, X2=U}

27

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Kernel Diagnosis

{A2=U, X2=U}

Kernel Diagnoses

Partial Diagnosis:

A partial mode assignment M, all of whose full extensions are diagnoses.

Kernel Diagnosis:

The smallest partial diagnoses.

A partial diagnosis K, no subset of which is a partial diagnosis.

?

?

?

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A3

X1

1

0

1

Partial Diagnosis

{A1=U, A2=U, X2=U}

28

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Outline

• Programs that monitor and control
hidden states.

• Consistency-based Diagnosis
– Encoding diagnoses compactly using kernels.
– Using conflicts to divide and conquer.

29

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Conflicts Explain How to
Remove Symptoms
A

B

C

D

E

1

1

1

0

F

G

X

Y

Z

Symptom:
F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.

Conflict 1: {A1=G, A2=G, X1=G} is inconsistent.

Conflict: An inconsistent partial assignment to mode variables X.

F 0

1
1

0

→One of A1, A2 or X1 must be broken.

1

A1

A2

A3

X1

X2

Symptom

30
2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Second Conflict

Symptom: G is observed 1, but predicted 0.

Conflict 2: {A1=G, A3=G, X1=G, X2=G} is inconsistent.

Symptom

1

1

A

B

C

D

E

F

G

X

Y

Z

1

1

1

0

1

0

1
1

0

A1

A2

A3

X1

X2

Conflicting modes aren’t always

upstream from symptom.

→One of A1, A3, X1 or X2 must be
broken.

31

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Summary: Conflicts
1 Symptom

Conflict: A partial mode assignment M that is
inconsistent with the model and observations.

Properties:
• Every superset of a conflict is a conflict.
• Only need conflicts that are minimal under subset.
• implies

1

0

A

B
C
D

E

F

G

X

Y

Z

1

1
1
0

1

0

1
1

1

A1

A2

A3

X1

X2

Obs
2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

M

32

Diagnosis by
Divide and Conquer

Given model Φ and observations Obs,
1. Find all symptoms.
2. Diagnose each symptom separately

(each generates a conflict).
3. Merge diagnoses

(set covering → kernel diagnoses).

General Diagnostic Engine
[de Kleer & Williams, 87]

Conflict
Recognition

Candidate
Generation

33

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

Summary: Mode Estimation
Given:
 Mode, State, Observation Variables: X, Y, and O Y
 Obs = an assignment to O
 Model: Φ(X,Y) = components + structure

And(i):
G(i):

Out(i) = In1(i) AND In2(i)
U(i): No Constraint

• All behaviors are associated with modes.
• All components have “unknown Mode” U,
whose assignment is never mentioned in any
constraint.

A

B

C

D

E

1

1

1

0

1

F

G

X

Y

Z

0

1

A1

A3

X1

1

0

1

M,obs  {X  DX | Obs(X,Y) is satisfiab
Return: All mode estimates

le}

2/8/16 16.412J/6.834J S16: L2 Monitoring Hidden State

34

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu/

