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Today: Risk-bounded Motion Planning

• M. Ono and B. C. Williams, "Iterative Risk Allocation: A New Approach to Robust Model Predictive Control 
with a Joint Chance Constraint,” IEEE Conference on Decision and Control, Cancun, Mexico, December 
2008.

• M. Ono, B. Williams and L. Blackmore, “Probabilistic Planning for Continuous Dynamic Systems under 
Bounded Risk,” Journal of Artificial Intelligence Research, v. 46, 2013.

After Advanced Lectures: Risk-bounded Scheduling

• C. Fang, P. Yu, and B. C. Williams, “Chance-constrained Probabilistic Simple Temporal Problems,” AAAI, 
Montreal, CN, 2014.

• A. Wang and B. C. Williams, “Chance-constrained Scheduling via Conflict-directed Risk Allocation,“ AAAI, 
Austin, TX, January, 2015.

After Advanced Lectures: Risk-bounded Probabilistic Activity Planning

• Santana, P., Thiébaux, S., Williams, B.C., "RAO*: an Algorithm for Chance-Constrained POMDP's,” AAAI, 
Phoenix, AZ, February 2016.

Homework: 

• Changing Pset order; different from syllabus.

• IRA pset soon (next 1-2 weeks)

• Let Steve know what times work for advanced lecture dry runs

Assignments
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• Maximizing utility under bounded risk 
makes sense.

• Risk allocation can help us solve.

Key takeaways

October 
29th, 2015
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• Review

• Risk-aware Trajectory Planning

• Iterative Risk Allocation (IRA)

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)

Outline
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Depth Navigation for Bathymetric Mapping – Jan. 23rd, 2008

© MBARI. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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Dynamic Execution 
of State Plans

Command script

00:00 Go to x1,y1
00:20 Go to x2,y2
00:40 Go to x3,y3
…

04:10 Go to xn,yn

Plant

Commands

Leaute & Williams, AAAI 05
© MBARI. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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of State Plans

Sulu

Model-based Executive

Observations Commands

“Explore mapping region for at least 
100s, then explore bloom region for at 
least 50s, then return to pickup region. 

Avoid obstacles at all times”
State Plan

Plant

Leaute & Williams, AAAI 05

Optimal

Robust

Dynamics

+
Constraints
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© MBARI. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faq-fair-use/.
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Sulu: Dynamic Execution 
of State Plans

Remain in [safe region]

Remain in

[bloom region]

e1
e5

Remain in

[mapping region]e2 e3 e4
End in

[pickup region]

[50,70] [40,50]

[0,300]

Obstacle 1

Obstacle 2

Mapping 

Region

Bloom 

Region
Pickup 

Region

“Explore bloom region for between 50 and 70
seconds. Afterwards, explore mapping region
for between 40s and 50s. End in the pickup 
region. Avoid obstacles at all times. Complete 
the mission within 300s”

Issue: Activities couple through time and state constraints. 

Approach: Frame as Model-Predictive Control
using Mixed Logic or Integer / Linear Programming.

[Leaute & Williams, AAAI 05]

A state plan is a model-based program that is 
unconditional, timed, and hybrid and 
provides flexibility in state and time.
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Frame Planning as a Mathematical Program
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Encode “Remain In” Constraints, . . .

Remain in [ R ] eEeS

 ReTteT kEkS
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•Thomas Léauté, "Coordinating Agile Systems through the Model-based Execution of Temporal Plans, " S. M. Thesis, 

Massachusetts Institute of Technology, August 2005.

•Thomas Léauté, Brian Williams, “Coordinating Agile Systems Through the Model-based Execution of Temporal Plans," 

Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA, July 2005, pp. 114-120. 
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• Review

• Risk-aware Trajectory Planning

• Iterative Risk Allocation (IRA)

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)

Outline
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Issue: Frequent Mission Aborts

Minimum Altitude

Planned trajectory

Actual trajectory

Attitude is less than the minimum altitude

Mission abort
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Chanced Constrained, 
Robust Path Planning

– “Plan optimal path to goal such that 
p(failure) ≤ Δ.”

p(failure) ≤ Δ

Expected path

October 
29th, 2015
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Risk – Performance Tradeoff
• Maximum probability of failure is used to 

trade performance against risk-aversion.

October 
29th, 2015

Risk Bounded Goal-directed Motion Planning 15
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[Blackmore, PhD]



Goal-directed, Risk-bounded Planning

Remain in [safe region]

Explore

[bloom region]

e1
e5

Explore

[mapping region]e2 e3 e4
End in

[pickup region]

[50,70] [40,50]

[0,300]

2. p( End in [pickup region] fails OR Remain in [safe region] fails ) < .1%.

1. p( Remain in [bloom region] fails OR Remain in [mapping region] fails ) < 5%.

Constraints on risk of failure (Chance Constraints):

1. Science Activities

2. Safety Activities

Instance of Chance-constrained Programming.

“Stay over science region with 95% success,  
avoid collision and achieve pickup with 99.9% success.”

Operator: Specifies acceptable risk.
Executive: Decides how to use risk effectively.
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• p-Sulu: Probabilistic Sulu (plan executive)

Control Sequence

Output

Input and Output

p

p-Sulu

Input

Goal

(cc-QSP)

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 17

https://ocw.mit.edu/help/faq-fair-use/


Example Execution

Remain in [safe region]

Remain in

[bloom region]

e1
e5

Remain in

[mapping region]e2 e3 e4
End in

[pickup region]

[50,70] [40,50]

[0,300]

T(e1)=0

T(e2)=70

T(e3)=110 T(e4)=150 T(e5)=230
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Problems

Waypoint

Goal

Start

t = 1

t = 5

Convex chance-constrained traj opt

Fixed schedule

Non-convex, chance-constrained traj opt

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Fixed schedule

Flexible schedule (QSP)
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Deterministic Finite-Horizon Optimal Control
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Example: Connected Sustainable Home
joint w F. Casalegno & B. Mitchell, MIT Mobile Experience Lab

• Goal: Optimally control HVAC, window opacity, washer and dryer, e-car.

• Objective: Minimize energy cost.

© MIT Mobile Experience Lab. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Qualitative State Plan (QSP)

Maintain room 

temperature

Wake 

up

Wake 

up

Maintain room 

temperature

Go to 

work

Home 

from 

work

Go to 

sleep

Maintain comfortable 

sleeping temperature

[24 hours]

“Maintain room temperature after waking 
up until I go to work. No temperature 
constraints while I’m at work, but when I 
get home, maintain room temperature
until I go to sleep. Maintain a 
comfortable sleeping temperature while I 
sleep.”

…
…

[1-3 hour] [6-8 hours] [7-8 hours][7-9 hours]

Sulu [Leaute & Williams, AAAI05]
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Maintain room 

temperature

Wake 

up

Wake 

up

Maintain room 

temperature

Go to 

work

Home 

from 

work

Go to 

sleep

Maintain comfortable 

sleeping temperature

[24 hours]

(p)Sulu Results

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 26



• Review

• Risk-aware Trajectory Planning

• Iterative Risk Allocation (IRA)

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)

Outline
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Example: Race Car Path Planning

Start

Goal

Walls

Planned Path

Actual Path
Safety Margin

Safety M
argin

Idea: 

• Create safety margin that 
satisfies the risk bound 
from start to the goal.

• Reduce to simpler, 
deterministic optimization 
problem.

Problem

Find the fastest path to the 
goal, while limiting the 
probability of crash
throughout the race to 0.1%

Risk bound
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Executive creates safety margins that satisfy 
risk bounds while maximizing expected utility

Start

Goal

Safety margin

Walls

(a) Uniform width safety margin

(b) results in better path → takes risk when most beneficial

Start

Goal

Walls

Safety margin

(b) Uneven width safety margin

[Ono & Williams, AAAI 08]Approach: Algorithmic Risk Allocation
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q

Key Idea - Risk Allocation

Corner
Narrow safety margin
= higher risk

Straightaway
Wide safety margin
= lower risk

• Taking risk at the corner
results in a shorter path, 
than taking the same risk 
at the straightaway.

• Sensitivity of path length 
to risk is higher at the 
corner.

• Risk Allocation

– Optimize allocation of risk to 
time steps and constraints.
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Iterative Risk Allocation (IRA) 
Algorithm

Iteration

•Descent algorithm

•Starts from a suboptimal risk allocation
•Improves it by iteration

)()()( 2
*

1
*

0
* δδδ JJJ 

(Refer to paper for proof)
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin

No gap = Constraint is active

Gap = constraint is inactive

Best available path given 
the safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin

ActiveInactive

Inactive

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 36



Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk 
allocation

2 Loop
3 Compute the best 

available path given the 
current risk allocation

4 Decrease the risk where 
the constraint is inactive

5 Increase the risk where 
the constraint is active

6 End loop
Start

Goal

Safety margin
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Monterey Bay Mapping Example

Sea floor level

Risk allocation (               )%5
Ono & Williams, AAAI 08
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• Review

• Risk-aware Trajectory Planning (IRA)

• Iterative Risk Allocation

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)

Outline
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Risk-Sensitive Architectures for Exploration
• In collaboration with JPL, WHOI and Caltech.

• Initial year study, funded by Keck Institute for Spaces Sciences.

• 2 year follow on for demonstration.

NereId Under IceVenus Sage © Woods Hole Oceanographic Institution. All rights reserved. This
content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain.
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Risk-aware Planning & Execution

User
Kirk

Pike

Sulu

Goals & 

models 

in RMPL

Control

Commands

Enterprise

Coordinates and monitors task risk

Plans paths within risk bounds

Sketches mission and assigns tasks within risk-bounds

Burton

Plans actions within risk bounds.

Bones

Diagnoses incipient failures

Uhura

Collaboratively adapts goal to reduce risk

Start

Goal
Walls

Safety margin

11:00 a.m. 4:00 p.m. 10:00 p.m.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Falkor Cruise – March-April, 2015

Falkor - Schmidt Ocean Institute

Slocum Glider

© Teledyne Webb Research. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

© Schmidt Ocean Institute. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.

© Schmidt Ocean Institute. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Glider Primer

© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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User Kirk

Pike

Sulu-lite

Goals & 

models 

in RMPL

Control

Commands

Enterprise

Coordinates and monitors tasks

Plans paths

Sketches mission and assigns tasks

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Activity Planning in Scott Reef

region1

no-fly zone

region2
region3

region4

no-fly zone

ship1

Iver1

glider

Iver2

10:00-11:30am

10:30-13:00

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 48



START POINT

END GOAL
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April/May 2016 Deployment:
Slocum Glider at Santa Barbara
• Mission goal:

– Use miniaturized mass spectrometer to find and 
characterize oil seeps off the coast of Santa Barbara.

• Primary research goal:
– Adaptive science using planning and rule-based algorithms.

• Secondary research goal:
– Risk-aware path planning.
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Advisory System for WHOI Cruise AT26-06: 
San Francisco, California to Los Angeles

• Find and sample methane seeps near the coast.

• Locate and sample a 60 year-old DDT dumping site.

• Recover and replace incubators on the seafloor.

Courtesy WHOI

Yu, Fang, Williams, Camilli, Fall 13

© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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• [Day 1] Jason failed after 30 min into its first dive, entered an 
uncontrollable spin and broke its optic fiber tether. 

• [Day 1] The new camera installed on Sentry did not work well 
in low light situations. It had been replaced during its second 
dive.

Everything Can Go Wrong

© Woods Hole Oceanographic Institution. All rights reserved. This
content is excluded from our Creative Commons license.For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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User

PTS

pUhura

pKirk

pSulu

Goals in

Natural

Language

Control

Commands

pEnterprise

Collaboratively diagnoses and resolves goal failures 

Plans mission and contingencies.

Navigates within risk bounds

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 53



• Review

• Risk-aware Trajectory Planning

• Iterative Risk Allocation (IRA)

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)
– Intuitions

– Math (optional)

Outline
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Problems

Waypoint

Goal

Start

t = 1

t = 5

Convex chance-constrained traj opt

Fixed schedule

Non-convex, chance-constrained traj opt

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Fixed schedule

Flexible schedule (QSP)
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Risk-Allocation Overview: One Variable

Idea 1: We easily solve a chance constrained problem with one 
linear constraint C and one normally distributed random variable x, 
by reformulating C to a deterministic constraint C’ on .

< 1%

C(x)Chance constraint: 

Risk < 1%
x̂ m

x̂
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Risk-Allocation Overview: Many Variables

Idea 2: Generalize to a single constraint over an 

N-dimensional random variable,

by projecting its distribution onto the axis 
perpendicular to the constraint boundary.

99.9%

99%

90%

80%

Chance constraint: 

Risk < 1%
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Risk-Allocation Overview: 
Many Constraints

99.9%

99%

90%

80%

Chance constraint: 

Risk < 1%

Idea 3: Generalize to a joint chance-constraint 
over multiple constraints C1, C2, 

by distributing risk.
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Risk-Allocation Overview: 
Many Constraints

99.9%

99%

90%

80%

Chance constraint: 

Risk < 1%

Find a solution such that:

1. Each constraint Ci takes less than δi risk, and

2. Σi δi ≤ 1%

Note: this bound is derived from Boole’s inequality.
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Risk-Allocation Overview: Conservatism

99.9%

99%

90%

80%

Chance constraint: 

Risk < 1%

Conservatism

Significantly less conservative than the elliptic approximation, 
especially in a high-dimensional problem.
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• Review

• Risk-aware Trajectory Planning

• Iterative Risk Allocation (IRA)

• Generalizing to Risk-aware Systems

• Convex Risk Allocation (CRA)
– Intuitions

– Math (optional)

Outline
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Reformulation: Now Lets Do the Math!

),(~ 0,00 xxNx 

Chance constraint

Stochastic dynamics

Risk bound
(Upper bound of the 
probability of failure)

Assumption: Δ < 0.5

s.t.

tttt
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t
wBuAxx  
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
1

1
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Conversion of Joint Chance Constraint










1Pr

00

i
tt

iT
t

N

i

T

t
gxhJoint chance

constraint

Intractable
- Requires computation of an integral over a multivariate Gaussian.

1

A set of individual chance constraints.
- involves univariate Gaussian distribution.

2

A set of deterministic state constraint.

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 63



Decomposition of Joint Chance Constraint










1Pr

00

i
tt
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t
gxhJoint chance

constraint

Using Boole’s inequality (union bound)

     BABA PrPrPr 

1

Where A and B denote constraint failures
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is implied by:
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Individual chance
constraints

Upper bound of the 
probability of violating ith
constraint at time t

Upper bound of the 
probability of violating any
constraints over the planning 
horizon

Risk allocation: 

 N
T 2

1
1
1 ,δ

1
Decomposition of Joint Chance Constraint

Variable

Constant

3/30/16 16.412J / 6.834J – L15 Risk-bounded Programs on Continuous States 65



)(min
:1

UJ
T

Tu U

),0(~ tt Nw 

),(~ 0,00 xxNx 

 






it

i
t

i
t

i
tt

iT
tit

gxh

,

1Pr




Individual chance
constraints










1Pr

00

i
tt

iT
t

N

i

T

t
gxhJoint chance

constraint

δ
min

Risk allocation
optimization

1
Decomposition of Joint Chance Constraint
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0
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Safety Margin

  i
t

i
tt

iT
t gxh  1PrChance constraint







1

0
0,, )(

t

n
x

Tn
w

n
tx AA

),(~ ,txtt xNx 

   12erf2 1
,   i

t
i
ttx

iT
t

i
t

i
t hhm 

where

(Inverse of cdf of Gaussian)

[Charnes et. al. 1959]

t = 1

t = 2

t = 3
t = 4t = 5

Safety Margin

Mean stateNominal path

 11 m

 22 m

Conversion to Deterministic Constraint
2
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Conversion to Deterministic Constraint
2

Convex if δ < 0.5

1.00.50

i
t

m Convex
Convex optimization
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• Maximizing utility under bounded risk 
makes sense.

• Risk allocation can help us solve.

Key takeaways
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Summary: Risk Allocation

Iteration

1. IRA: reallocates risk manually.
2. CRA,NRA: standard solver reallocates risk.

)()()( 2
*

1
*

0
* δδδ JJJ 
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Approach: Programming Cognitive Systems

1. An embedded programming language 
elevated to the goal-level through partial 
specification and operations on state (RMPL).

2. A language executive that achieves robustness by 
reasoning over constraint-based models and by 
bounding risk (Enterprise).

3. Interfaces that support natural human interaction 
fluidly and at the cognitive level (Uhura).

This image is in the public domain.
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Risk-aware Planning & Execution

User

Kirk

Pike

Sulu

Goals & 

models 

in RMPL

Control

Commands

Enterprise

Coordinates and monitors task risk

Plans paths within risk bounds

Sketches mission and assigns tasks within risk-bounds

Burton

Plans actions within risk bounds.

Bones

Diagnoses incipient failures

Uhura

Collaboratively adapts goal to reduce risk

Start

Goal

Walls

Safety margin

11:00 a.m. 4:00 p.m. 10:00 p.m.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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APPENDIX: RISK-BOUNDED PLANNING 
FOR NON-CONVEX PROBLEMS
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Next …

Waypoint

Goal

Start

t = 1

t = 5

Convex chance-constrained trajectory optimization

Fixed schedule

Non-convex, chance-constrained traj opt

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Fixed schedule

October 
29th, 2015
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Non-Convex Problem Formulation

Non-convex state constraint

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Fixed schedule

October 
29th, 2015
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Problem Formulation: Non-Convex Chance Constraint
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A set of individual
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Problem Formulation: Non-Convex Chance Constraint
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Solving Disjunctive Program
using Branch and Bound
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Example:
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Stochastic DLP Branch and Bound

)()( 22211211 CCCC 

)( 222111 CCC  )( 222112 CCC 

2111 CC  2211 CC  2112 CC  2212 CC 

Convex Optimization Problems

Repeat until no clauses left:
1. Select clause.
2. Split on disjuncts.

October 
29th, 2015

81Risk Bounded Goal-directed Motion Planning



)()( 22211211 CCCC 

Stochastic DLP Branch and Bound

)( 222111 CCC  )( 222112 CCC 

2111 CC  2211 CC  2112 CC  2212 CC 

Convex Optimization Problems

Waypoint

Goal

Start

t = 1

t = 5

Convex, chance-constrained

Fixed schedule
Repeat until no clauses left:

1. Select clause.
2. Split on disjuncts.

October 
29th, 2015
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Bound Sub-Problems
Through Convex Relaxation

)()( 22211211 CCCC 

)( 222111 CCC  )( 222112 CCC 

2111 CC  2211 CC  2112 CC  2212 CC 

• Bound: Remove all disjunctive clauses [Li & Williams 2005].

• Issue: Computing bound is slow!!

• Cause: Sub-problems include non-linear constraints.
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B&B Subproblem (non-linear)
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B&B Subproblem Relaxation (Linear)
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B&B Subproblem Relaxation (Linear)
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•All constraints are linear (FRR is typically LP or QP).
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FRR Intuition

• Results in an infeasible solution to the original problem.

• Gives lower bound on the cost of the original problem.

Start

Goal

Safety margin

Start

Goal

FRR Safety margin

FRROriginal problem
Sets safety margin for all 
constraints to max risk Δ.
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Problems

Waypoint

Goal

Start

t = 1

t = 5

Convex traj opt

Fixed schedule

Non-convex, traj opt

C

Waypoint

Goal

Start

Obstacle

t = 1

t = 5

Fixed schedule

C

Waypoint

Goal

Start

Obstacle

[1 3]

[2 4]

[0 5]

Simple temporal
constraints

Goal-directed  qualitative state plan traj opt 88



APPENDIX: OVERVIEW AND 
ALTERNATIVE APPROACHES
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What are the uncertainties and risks?

Airport

UAV

NFZ

Scenic region

October 
29th, 2015
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Robust Model Predictive Control

• Receding horizon (MPC) planners react to uncertainty 
after something goes wrong.

• Can we take precautionary actions 
before something goes wrong?

•Ali A. Jalali and Vahid Nadimi, “A Survey on Robust Model Predictive Control from 
1999-2006.”
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Robust versus Chance Constrained
R
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Wind speed

99%

90%
80% x

y

Assume probability 

distribution that 

characterizes uncertainty.

No Fly Zone

No Fly Zone

• Predicted position has bounded uncertainty.

• Problem: Find control sequence that satisfies 

constraints for all realizations of uncertainty. 

t =1 t =2

99.9%
99%

90%
80%

99.9%

99%

90%

80%

t =1 t =2

• Predicted position has probabilistic uncertainty.

• Problem: Find control sequence that satisfies 

constraints within a probability bound 

(Chance Constraint). 92
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Incorporating Uncertainty

• Deterministic discrete-time LTI model.

• Additive uncertainty

• Multiplicative uncertainty

ttt BuAxx 1
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p(wt )= N(ŵt,P0 )
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What to Minimize? (Bounded Uncertainty)

• Minimize the worst case cost

• Minimize nominal cost
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What to Minimize? (Stochastic Uncertainty)

• Utilitarian approach

• Chance constrained optimization

)()(min UU,X
U
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Probability of failurePenalty (constant)
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Probability of failure Risk bound
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Solution Methods for
Chance-Constrained Problems
• Sampling based methods

– Scenario-based
• Bernardini and Bemporad, 2009

– Particle control
• Blackmore et al., 2010

• Non-sampling-based methods

– Elliptic approximation 
(direct extension of robust predictive control)

• van Hessem, 2004

– Risk allocation
• Ono and Williams, 2008
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Particle Control
1. Use particles to sample random variables.

Obstacle 1

Obstacle 2

Goal Region

Initial state distribution.

Particles approximating 
initial state distribution.
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Particle Control
2. Calculate future state trajectory for each particle, leaving explicit, 

dependence on control inputs u0:T-1.

Obstacle 1

Obstacle 2

Goal Region
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Particle 1 for u = uB

Particle 1 for u = uA
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Particle Control
2. Calculate future state trajectory for each particle, leaving explicit, 

dependence on control inputs u0:T-1.

Obstacle 1

Obstacle 2

Goal RegionParticles 1…N
for u = uB

Particles 1…N
for u = uA
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Particle Control
3. Express chance-constraints of optimization problem approximately in 

terms of particles.

Probability of failure
True expectation approximated by the 
approximated byfraction of failing 
sample mean of costparticles.
function:.

Sample mean
approximates 
state mean.

Obstacle 1

Obstacle 2

Goal Region

t=0
t=1

t=2

t=3

t=4

E h(u0:F1,x1:F ) 

 1
N

h(u0:F1,x1:F
(i) )

i1

N



LB4



Particle Control
4. Solve approximate deterministic optimization problem for u0:F-1.

Obstacle 1

Obstacle 2

Goal Region

t=0

t=1

t=2

t=3

t=4

10% of particles fail in 
optimal solution.

δ = 0.1
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Convergence

– As N∞, approximation becomes exact.

Obstacle 1

Obstacle 2

Goal Region
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Convergence

– As N∞, approximation becomes exact.

Obstacle 1

Obstacle 2

Goal Region

10% probability of 
failure.
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Solution Methods for
Chance-Constrained Problems
• Sampling based methods

– Scenario-based
• Bernardini and Bemporad, 2009

– Particle control
• Blackmore et al., 2010

• Non-sampling-based methods

– Elliptic approximation 
(direct extension of robust predictive control)

• van Hessem, 2004

– Risk allocation
• Ono and Williams, 2008
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Elliptic Approximation
No Fly Zone

1. Derive probability distribution over future states as a 
function of control inputs.

Chance constraint: 

Risk < 1%

Note: When planning in an N-dimensional state space over  time steps, 
a joint distribution over an N-dimensional space must be considered.

99.9%

99%

90%

80%
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Elliptic Approximation
No Fly Zone

1. Derive probability distribution over future states as a 
function of control inputs.

2. Find a 99% probability ellipse.

Chance constraint: 

Risk < 1%

99.9%

99%

90%

80%

October 
29th, 2015

Risk Bounded Goal-directed Motion Planning 106



Elliptic Approximation
No Fly ZoneChance constraint: 

Risk < 1%

1. Derive probability distribution over future states as a 
function of control inputs.

2. Find a 99% probability ellipse.

3. Find control sequence that makes sure the probability 
ellipse is within the constraint boundaries.

99.9%

99%

90%

80%
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Conservatism of Elliptic Approximation
No Fly Zone 99.9%

99%

90%

80%

Issue: often very 
conservative

Real probability 
of failure

Probability density function
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Conservatism of Elliptic Approximation
No Fly Zone 99.9%

99%

90%

80%

Issue: often very 
conservative.

Conservatism
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