NNERS

Risk-bounded Programming
on Continuous State

Prof. Brian Williams
March 30t 2016
Cognitive Robotics (16.412J) / 6.834))

photo courtesy MIT News



Assignments

Today: Risk-bounded Motion Planning

e M. Ono and B. C. Williams, "lterative Risk Allocation: A New Approach to Robust Model Predictive Control
with a Joint Chance Constraint,” IEEE Conference on Decision and Control, Cancun, Mexico, December
2008.

e M. Ono, B. Williams and L. Blackmore, “Probabilistic Planning for Continuous Dynamic Systems under
Bounded Risk,” Journal of Artificial Intelligence Research, v. 46, 2013.

After Advanced Lectures: Risk-bounded Scheduling

. C. Fang, P. Yu, and B. C. Williams, “Chance-constrained Probabilistic Simple Temporal Problems,” AAAI,
Montreal, CN, 2014.

* A.Wangand B. C. Williams, “Chance-constrained Scheduling via Conflict-directed Risk Allocation,” AAAI,
Austin, TX, January, 2015.

After Advanced Lectures: Risk-bounded Probabilistic Activity Planning

. Santana, P., Thiébaux, S., Williams, B.C., "RAO*: an Algorithm for Chance-Constrained POMDP's,” AAAI,
Phoenix, AZ, February 2016.

Homework:

*  Changing Pset order; different from syllabus.

* IRA pset soon (next 1-2 weeks)

*  Let Steve know what times work for advanced lecture dry runs
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Key takeaways

* Maximizing utility under bounded risk
makes sense.

* Risk allocation can help us solve.

October
29th, 2015

Risk Bounded Goal-directed Motion Planning



Outline

* Review

* Risk-aware Trajectory Planning

* |terative Risk Allocation (IRA)

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)
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Depth Nawgatlon for Bathymetric Mapping —Jan. 239, 2008

© MBARI. All rights reserved. This content is excluded from
our Creative Commons license. For more information,
see https://ocw.mit.edu/help/faqg-fair-use/.
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https://ocw.mit.edu/help/faq-fair-use/

Dynamic Execution
of State Plans

00:00 Go to x,,y,
00:20 Go to x,,y,
00:40 Go to x;,y;

04:10 Goto x,,y,

Command script

Commands

\- S

© MBARI. All rights reserved. This content is excluded from

our Creative Commons license. For more information, Leaute & WllllamS AAAl 05
)

see https://ocw.mit.edu/help/fag-fair-use/.
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Dynamic Execution
of State Plans

“Explore mapping region for at least
100s, then explore bloom region for at
least 50s, then return to pickup region.

Avoid obstacles at all times”

State Plan
Sulu Dynamics
Model-based Executive . "
onstraints
T Observations lCommands
4 )

Optimal

(S MBARI. All rights reserved. This content is excluded fron# LeaUte & Williams’ AAAI 05

our Creative Commons license. For more information,
see https://ocw.mit.edu/help/fag-fair-use/.
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Sulu: Dynamic Execution
of State Plans

A state plan is a model-based program that is
unconditional, timed, and hybrid and
provides flexibility in state and time.

[0,300]

o

‘Explore bloom region for beﬁ"&gen 50 and 70 —— rT— —
seconds. Afterwards, explore mapping region i N
for between 40s and 50s. End in thé"pickup L ‘
region. Avoid obstacles at all times. Complete AN\
the mission within 300s” ™.

Region

Approach: Frame as Model-Predictive Control
using Mixed Logic or Integer / Linear Programming.

[Leaute & Williams, AAAI 05]
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Frame Planning as a Mathematical Program

min J (X, XUy uy) + f(Xy)

Cost function

XpnvsUey
Cost-to-go function
S.L. ’
— — co — Dynamics
HXk <g (k =0,1,--- N) Spatial constraints
Xy = Xgtart Initial position and velocity
_X@) X oal Goal position and velocity
-u_ <u, <u_  (k=01l---N-1) Thrust limits

XkE(xk Ve X )./k)TD ukE(F;c,k Fy,k)7
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Encode “Remain In” Constraints, . ..

[0,20]
b@tart m [a, & a, at bascD

e BN, ﬁm]@emain o [ ﬁ]@

[6,0c) [5,8]

[12,00)
End in [a, at ﬁ:c])‘ Remain in [, at firc]
@ >CRemain IN[R]

k=N

A {T(eS)Stk <T(e;)=x, ER}
k=0

*Thomas Léauté, "Coordinating Agile Systems through the Model-based Execution of Temporal Plans, " S. M. Thesis,
Massachusetts Institute of Technology, August 2005.

*Thomas Léaute, Brian Williams, “Coordinating Agile Systems Through the Model-based Execution of Temporal Plans,"
Proceedings of the Twentieth National Conference on Atrtificial Intelligence (AAAI-05), Pittsburgh, PA, July 2005, pp. 114-120.
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Outline

* Review

* Risk-aware Trajectory Planning

* |terative Risk Allocation (IRA)

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)
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Issue: Frequent Mission Aborts

Mission abort

Attitude is less than the minimum altitude

Actual trajectory

Planned trajectory

= =T
- ==
- -~

~
——————
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Chanced Constrained,
Robust Path Planning

— “Plan optimal path to goal such that
p(failure) < A.”

Expected path
& /

October
29th, 2015

Risk Bounded Goal-directed Motion Planning



Risk — Performance Tradeoff

 Maximum probability of failure is used to
trade performance against risk-aversion.

14
—— No uncertainty
=1 A=0.1
R . - = A=0.001 110
12} o0 A=0.0001 ]
> 105}
100}
10
951
90}
~—~ 8 i 9’
B 2 sl
£ T
§ 80
6 -
751
701
s
65[
60
ol 10° 10 10° 107 107
Maximum Probability of Collision (A)
| | | | | | Method: Uniform Risk Allocation
0
2 4 6 8 10 12 14 16 [Blackmore, PhD]

x(meters)

October
29th, 2015

Risk Bounded Goal-directed Motion Planning



Goal-directed, Risk-bounded Planning

Operator: Specifies acceptable risk.
Executive: Decides how to use risk effectively.

1. Science Activities

[0,300]

_.-*"150,70]
s Explore
- [bloom region]

____________
________________

“Stay over science region with 95 % siitcess, o
avoid collision and achieve pickup with 99.9% success.” 2. Safety Activities

Constraints on risk of failure (Chance Constraints):
1. p( Remain in [bloom region] fails OR Remain in [mapping region] fails ) < 5%.
2. p( End in [pickup region] fails OR Remain in [safe region] fails ) < .1%.
Instance of Chance-constrained Programming.
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Input and Output

e p-Sulu: Probabilistic Sulu (plan executive)

p-Sulu

Control Sequence

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Example Execution

O O P A L

oo T

[0,300]

Tle)=110  uos T(e)=150 o)
5 (e)=230
ROMCR =" OE=SS
)

End in
[pickup region] @

> Remain in [safe region]
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Problems

Waypoint

Start
Convex chance-constrained traj opt

Fixed schedule\
=35

~®
|:> Flexible schedule (QSP)
Goal

4

Obstacle

Waypoint

Start

Non-convex, chance-constrained traj opt
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Deterministic Finite-Horizon Optimal Control

min_J (u,.,) |
Uy eUT _T Convex function
St Cost function (e.g. fuel consumption)
T
Discrete-time A X — A)C + BM
linear dynamics =0 t+1 4 4
T N .T .

State constraints ! < o
(Convex) t=1i=1

. N Logical '\

Notations: {\ICZ. =C,ACoA...AC,, conjunctions

N
vC =Cv(C,v...v(C, Logical
i=1

disjunctions
\ ’ _/
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Chance-Constrained FH Optimal Control

min J (i, )
ulTeU
sl o N
Stochastic dynamics t/\() x Axt + But _I'l'\wz /\

«— Gaussian distribution

p Nf{V&O gi Exogenous disturbance
State constraints NN\

t 1 i= 1
N(XO 9 x O ) State estimation error
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Chance-Constrained FH Optimal Control

min J(u,;)

Uy.r eU

S.1. 71

Stochastic dynamics t/—\() xt+1 — Axt + But + Wt

3/30/16 16.412) / 6.834) — L15 Risk-bounded Programs on Continuous States



Chance-Constrained FH Optimal Control

min J(u,;)

Uyt eU

sl o

AX,, =Ax,+Bu +w,
t=0

Risk bound

(Upper bound of the
Wt ~ N(Og zt) probability of failure)

. Assumption: A< 0.5
Xo ~ N (X2, 0 — \
T N T . N-.
l l Y4 \
Prianh x =g |215A;

Chance constraint t=1i=1 ~__

Stochastic dynamics
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Example: Connected Sustainable Home

© MIT Mobile Experience Lab. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

Goal: Optimally control HVAC, window opacity, washer and dryer, e-car.
* Objective: Minimize energy cost.
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Qualitative State Plan (QSP)

Sulu [Leaute & Williams, AAAIO5]

[24 hours]

[1-3 hour] Lo~ [79hoursk. 7 (68 hours] s, -~ [7-8 hours] %
Maintain comfortable \‘/'

Vi Y
Maintain room Maintain room
temperature n temperature
> /’ \\ v’
.

1
sleeping temperaturg !

-~ -

“Maintain room temperature after wakmg
up until I go to work. No temperature !
constraints while I'm at work, but when I
get home, maintain room temperature
until I go to sleep. Maintain a

comfortable sleeping temperature while I

i3) - AN
sleep. §

53420 4425 4430 4435 4440
Time [hour]

O
=8
=)
=3
Iy
=2
@
et
@
=]
k=1
<
9
s
@
el
o
&
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(p)Sulu Results

— Temperalurs
2y — — — Conshrainks
26 |
23 | T T ==
L oag |
T
8 23}
H ____________ o
o e
= _.-
2.’
‘/
‘/
e
R
L
T
0,’
/ Lo =
/' 1 > 21 1
. m 15 20
TimeA hours)
/

AY
Maintain comfortabl(%)/

Maintain room «

1

temperature sleeping temperaturel |

1
’

N ’
~ ,
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Outline

* Review

* Risk-aware Trajectory Planning
 |terative Risk Allocation (IRA)

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)
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Example: Race Car Path Planning

/% Problem

_ PlannedFath Find the fastest path to the
2. acalpath | goal, while limiting the

/ probability of crash ~ Riskbound

Goal throughout the race to(O.l% \,\
ot
|dea:

e (Create safety margin that
satisfies the risk bound
from start to the goal.

e Reduce to simpler,
deterministic optimization
problem.
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Executive creates safety margins that satisfy
risk bounds while maximizing expected utility

(a) Uniform width safety margin (b) Uneven width safety margin

Goal

‘ Safety margin

Start {ﬁ Start

(b) results in better path — takes risk when most beneficial >
Approach: Algorithmic Risk Allocation [Ono & Williams, AAAI 08]

Safety margin
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Key ldea - Risk Allocation

* Taking risk at the corner
results in a shorter path,
than taking the same risk
at the straightaway.

e Sensitivity of path length
to risk is higher at the
corner. Corner

Narrow safety margin

 Risk Allocation = higher risk

— Optimize allocation of risk to
time steps and constraints.

Straightaway
Wide safety margin
= lower risk
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Iterative Risk Allocation (IRA)
Algorithm

eDescent alggrﬂ!thm . —
J (0y)=J (0,)=J (0,)

(Refer to paper for proof)

Iteratic> ii

eStarts from a suboptimal risk allocation
e|mproves it by iteration
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Iterative Risk Allocation Algorithm

Algorithm IRA
1 Inmitialize with arbitrary risk
allocation
2 Loop
3 Compute the best
Goal available path given the
current risk allocation
4 Decrease the risk where
the constraint 1s 1nactive
Safety margin 5 t. 5 Increase th§ risk Where
art the constraint 1s active
6 End loop
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Iterative Risk Allocation Algorithm

No gap = Constraint is active

\

Goal

Best available path givén
the safety margin

Safety margin Start

Gap = constraint is inactive
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Algorithm IRA
1 Initialize with arbitrary risk
allocation

2 Loop

3 Compute the best
available path given the
current risk allocation

4 Decrease the risk where
the constraint 1s 1nactive

5 Increase the risk where
the constraint 1s active

6 End loop




Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk

allocation
2 Loop
3 Compute the best

available path given the
current risk allocation

4 Decrease the risk where
the constraint 1s 1nactive
Safety margin . t‘ 5 Increase th§ risk Where
art the constraint 1s active
6 End loop
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk

allocation
2 Loop
3 Compute the best

available path given the
current risk allocation

4 Decrease the risk where
the constraint 1s 1nactive
Safety margin X t$ 5 Increase thg risk where
art the constraint 1s active
6 End loop
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Iterative Risk Allocation Algorithm

Algorithm IRA
Inactive Active
4 1 Initialize with arbitrary risk
allocation
2 Loop
3 Compute the best
available path given the
current risk allocation
Inactive 4 Decrease the risk where
the constraint 1s 1nactive
Safety margin ! 5 Increase th§ risk Where
art the constraint 1s active
6 End loop
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk

allocation
2 Loop
3 Compute the best

available path given the
current risk allocation

4 Decrease the risk where
the constraint 1s 1nactive
Safety margin . 5 Increase th§ risk Where
art the constraint 1s active
6 End loop
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Iterative Risk Allocation Algorithm
Algorithm IRA

1 Initialize with arbitrary risk

allocation
2 Loop
3 Compute the best

available path given the
current risk allocation

4 Decrease the risk where
the constraint 1s 1nactive

Safet . 5 Increase the risk where
AIEy margih Start the constraint is active
6 End loop
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Iterative Risk Allocation Algorithm

Algorithm IRA
1 Initialize with arbitrary risk
allocation
2 Loop
3 Compute the best
available path given the
current risk allocation
4 Decrease the risk where
the constraint 1s 1nactive
Safety margin A t4 5 Increase th§ risk Where
art the constraint 1s active
6 End loop
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Monterey Bay Mapping Example

Yerical position [m]

1500 ¢
— - A=1%
N — - A=5%
““nh_:::ﬁ,___h__‘ﬁ — - —A=10%
1550 F ““-::::—h_ﬁ:“-a__h oea floor
1600
~— Sea floor level
-1B4[0 , . :
0 500 100 150
Horizantal position [m] -
. . o Ono & Williams, AAAI 08
Risk allocation( A =3%
o0z T T T T T T T T
0ms - -
oo F .
0005 _
" 1 ; 8 10 12 T4 16 EER EGR

3/30/16
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Outline

* Review

* Risk-aware Trajectory Planning (IRA)
* [terative Risk Allocation

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)

3/30/16 16.412) / 6.834) — L15 Risk-bounded Programs on Continuous States



Risk-Sensitive Architectures for Exploration

* |n collaboration with JPL, WHOI and Caltech.
* |nitial year study, funded by Keck Institute for Spaces Sciences.

Venus Sage Nereld Under Ice

. L : . © Woods Hole Oceanographic Institution. All rights reserved. This
This image is in the public domain. content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

2 year follow on for demonstration.
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Risk-aware Planning & Execution

Enterprise

Uhura

Goals & Collaboratively adapts goal to reduce risk
User models
in RMPL
M
' 11:00 a.m. 4:00 p.m. 10:00 p.m.
Sketches mission and assigns tasks within risk-bounds
- A
Burton
\_ )
Plans actions within risk bounds.
Pike
Control Coordinates and monitors task risk
Commands
—

aths within risk bounds

Bones

.

Diagnoses Incipient failures

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Falkor Cruise — March-April, 2015

Slocum Glider

© Teledyne Webb Research. All rights reserved. This content
is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.

Falkor - Schmidt Ocean Institute

© Schmidt Ocean Institute. All rights reserved. This content

is excluded from our Creative Commons license. For more © Schmidt Ocean Institute. All rights reserved. This content

information, see https://ocw.mit.edu/help/faqg-fair-use/. is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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ijg Bank:Shoals

IAshmore rReef,
Sho

Wave Goyvernor‘Bank I
{ iBanrac
Vulzan Shoal 7 Gl
Eugene MtDermott Shoal/®

jHeyvu

Echugc
{;soott Reef j

lBroome &

DatalS|IOANCAARUISENavy INGATGEBCE,

Imageilfandsat Googleeal
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. Imagery Date: 4/10/2013" lat -14.2812882"lon' 126.6191972 elev: 64'm  eye alti1444.33



Glider Primer

© Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Enterprise

Goals &
User models

in RMPL
M

Coordinates and monitors tasks

Control .
Commands Sulu-lite
_

Plans paths

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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Activity Planning in Scott Reef

no-fly zone

region4

glider 10:00-11:30am
regionl S
outh Reef Lagoon

Iver2 110:30-13:00 /f"‘f’/x”

——=—_ Iverl

o, shipl region3
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-30.0
-35.0
-40.0
-45.0
R . %
-55.0
C_ -
g LM;J -60.0
I;‘::\‘_fa'\ » ”;:--‘_/‘ A ol _f-“-u.
' - START POINT
//.,./'m r-j i _“, W \\-\ f\‘
A ,' ;_’egf" f’ ar’ ) s = : 2
I ) A , : s .
7, ENDGOAL’.. A

(

|



April/May 2016 Deployment:
Slocum Glider at Santa Barbara

* Mission goal:

— Use miniaturized mass spectrometer to find and
characterize oil seeps off the coast of Santa Barbara.

* Primary research goal:

— Adaptive science using planning and rule-based algorithms.

e Secondary research goal:

— Risk-aware path planning.
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Advisory System for WHOI Cruise AT26-06:
San Francisco, California to Los Angeles

Yu, Fang, Williams, Camilli, Fall 13

* Find and sample methane seeps near the coast.

* Locate and sample a 60 year-old DDT dumping site.
Recover and replace incubators on the seafloor.

_.
z z Al ) ,v P
. = 'éy" iz

Courtesy WHOI © Woods Hole Oceanographic Institution. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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Everything Can Go Wrong

e [Day 1] Jason failed after 30 min into its first dive, entered an
uncontrollable spin and broke its optic fiber tether.

 [Day 1] The new camera installed on Sentry did not work well
in low light situations. It had been replaced during its second

© Woods Hole Oceanographic Institution. All rights reserved. This
content is excluded from our Creative Commons license.For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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pEnterprise

Goals in
Natural
Language
< >

User

Control
Commands

Navigates within risk bounds
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Outline

* Review

* Risk-aware Trajectory Planning

* [terative Risk Allocation (IRA)

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)

— Intuitions
— Math (optional)
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Problems

Waypoint

Start
Convex chance-constrained traj opt

Fixed schedule\
=35

~®
|:> Flexible schedule (QSP)
Goal

4

Obstacle

Waypoint

Start

Non-convex, chance-constrained traj opt
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Risk-Allocation Overview: One Variable

Idea 1: We easily solve a chance constrained problem with one
linear constraint C and one normally distributed random variable x,

e

by reformulating C to a deterministic constraint C’ on x

\ Prob. Distribution of x

~

C'(R) = C(X)—m

—

Chance constraint: X e— m —>C(X) X
Risk < 1%
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Risk-Allocation Overview: Many Variables

Chance constraint:

Risk < 1%

ldea 2: Generalize to a single constraint over an

’

by projecting its distribution onto the axis
verpendicular to the constraint boundary.

3/30/16 16.412) / 6.834) — L15 Risk-bounded Programs on Continuous States



Risk-Allocation Overview:
R~ Cangtraints

Chance constraint:

Risk < 1%

<0
1C1 CZ <62

Idea 3: Generalize to a joint chance-constraint
over multiple constraints C;, C2,

by distributing risk.
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Risk-Allocation Overview:

Chan.::e‘::onstraint:ho N St I'c | ntS
Risk < 1%

<8 ¢

Find a solution such that:
1. Each constraint C, takes less than 6, risk, and

2. 2.6,<1%

Note: this bound is derived from Boole’s inequality.
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Risk-Allocation Overview: Conservatism

Chance constraint:

Risk < 1%

<0
161 CZ <62

Conservatism = p(x)dx

Significantly less conservative than the elliptic approximation,
especially in a high-dimensional problem.
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Outline

* Review

* Risk-aware Trajectory Planning

* [terative Risk Allocation (IRA)

* Generalizing to Risk-aware Systems

e Convex Risk Allocation (CRA)

— Intuitions
— Math (optional)
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Reformulation: Now Lets Do the Math!

min J(u,;)

Uyt eU

sl o

AX,, =Ax,+Bu +w,
t=0
Risk bound
(Upper bound of the
Wt ~ N(Og zt) probability of failure)
Assumption: A<0.5

Stochastic dynamics
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Conversion of Joint Chance Constraint

T N 7
Joint chance PI’ A A hiTx < gi > I—A
constraint i=0i=0 | 1 t

Intractable
- Requires computation of an integral over a multivariate Gaussian.

N g

A set of individual chance constraints.
_involves univariate Gaussian distribution.

&

A set of deterministic state constraint.
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Decomposition of Joint Chance Constraint

T N
Joint chance PI’ A A hiTx < gi > I—A
constraint i=0i=0 | 1 t

N

Using Boole’s inequality (union bound)

Pr|AU B|< Pr|A|+ Pr|B]

Where A and B denote constraint failures
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& Decomposition of Joint Chance Constraint

Joint chance
constraint

Individua! chance
constraints

Risk allocation:

5=|5,525"]

T N

t=0i=0

is implied by:

t=1i=1

Y 5 <A

i [
Prl A AR X, < g

>1—A
/

S -,
Constant A~ ~

7
Upper bound of the
probability of violating
constraints

' N —
lT l /, l.\\
A /\(Pr[ht x, <g, |2 l—r\é;)

ygria ble

Upper bound of {he
probability of violating ith
constraint at time 7
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& Decomposition of Joint Chance Constraint

N\

T S.1.
Risk allocation T-1
optimization A xt+1 — A’xt —|—But + Wt

Individual chance

constraints B 2 I 1S
/\AITr[l@;' X< gt]zll O

Joint chance Pr e
constrain é"t )=
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a Conversion to Deterministic Constraint
Chance constraint iT ] ]
Pr[ht x, < gt]z 1-0,

Deterministic constraint N h;T)_Ct < g; — mtl (5;)

A Prob. Distribution of h;Txt |
|
1

SR AN

|
|
|
|
|
|
|
|
|
|
|
1
oy ~ i
17—
hoX e t
\ / e e L. .
! Mean state (deterministic variable)
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a Conversion to Deterministic Constraint
Chance constraint iT ] ]
Pr[ht x, < gt]z 1-0,

Deterministic constraint N h;T)_Ct < g; — mtl (5;)

T Safety Margin
y Nominal path =—=Mean state
iT ] —1 ]
th' % hert (26; — 1)
=9 (Inverse of cdf of Gaussian)

2, ,)

x.f
nz %

wx\ 7 ] 7)6,0
] — [Charnes et. al. 1959]
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a Conversion to Deterministic Constraint

min min J(u,
8 ul:TEUT ( IT)
S.1. -
AX_, ., =Ax,+Bu +w,
=0

w, ~ N(Oazt)
Xo ™ N()_Coazx,o)

T I
Individual chance A A Pr[htiTxt < gi]Z 1_5;‘

constraints t=1i=1 g

» 5 <A
t,1
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a Conversion to Deterministic Constraint

min min m: cony:ONVEX Optimization
0 z’tlzTEIJJ
s.1.
y S
0 0.5 1.05f

T 1
1T — ] ] I
t/=\1i/=\1ht tggt_mt(é;)

l Convex if 6 <0.5
Y 6 <A
t.,i
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Key takeaways

* Maximizing utility under bounded risk
makes sense.

* Risk allocation can help us solve.
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Summary: Risk Allocation

j*(ﬁo) 2*7*(61) = j*(ﬁz)

Iteratic> ii

1. IRA: reallocates risk manually.
2. CRA,NRA: standard solver reallocates risk.
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Approach: Programming Cognitive Systems

n the public dm

1. Anembedded programmlng language
elevated to the goal-level through partial
specification and operations on state (RMPL).

2. Alanguage executive that achieves robustness by
reasoning over constraint-based models and by
bounding risk (Enterprise).

3. Interfaces that support natural human interaction
fluidly and at the cognitive level (Uhura).
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Risk_aware Planning & Execution

Enterprise

Goals & Collaboratively adapts goal to reduce risk forgl
User models : ,
. in RMPL L AR
M -
/ 11:00 a.m. 4:00 p.m. 10:00 p.m.
Sketches mission and assigns tasks within risk-bounds
- 7
Burton

\_ )

Plans actions within risk bounds.

Control Coordinates and monitors task risk
Commands
_

aths within risk bounds

Safety margi

Diagnoses Incipient failures

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/.
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APPENDIX: RISK-BOUNDED PLANNING
FOR NON-CONVEX PROBLEMS
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Next ... Fixed schedule \

Waypoint

Start
Convex chance-constrained trajectory optimization

N

Goal

r

Obstacle

Waypoint

Start

Non-convex, chance-constrained traj opt

October
29th, 2015

Risk Bounded Goal-directed Motion Planning



Non-Convex Problem Formulation

min Jl(ul:Nafcl:N)

Uq. UV

5

Fixed schedule\
\ t:

//\\w
Goal
r=1

4

Obstacle
Waypoint

Start

S.t. Vte T, x1 = Az + Bius + wy

A

| 1€ZL.(s)

V

jejc,i

Non-convex state constraint

October
29th, 2015

h

i

Cy,]

X < Jec.ij > 1 — Ac
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Problem Formulation: Chance Constraint

CC over convex state constraints

. i
Uy eu’ J (ut)

A chance constraints

T N
s.t. Pr[/\1 /\lht”Txt Sgt”} >1-A u
t=1l n=

v Risk allocation A set of

— chance constraints
Convex Deterministic Program

min J' (u,) q
Uyr eu’

1y A set of

st. AANWTY < "—m”(§”) .
t=ln=1 ' ! o A state constraints

pal-directed Motion Planning



Problem Formulation: Chance Constraint

CC over convex state constraints CC over non-convex state constraints
min _J* () min J'(u,)
upr€l ur €U’

T N ' N|K
s.t. Pr{/\/\h”Tx_gt} 1-A st Pr{/\/\vh””x_gt }_I—A

t=l n=1 t=1 n=1 k=1

Risk allocation

Risk allocation , _
-\ /- -\ /- Risk selection

Convex Deterministic Program Convex Disjunctive Deterministic Program
man(u) mmJ(u)
urelU ur €U
T N . T N|K i P
st. AAh'Xx <g'—m, (5”) st. AAIVIET X < gt —m! (5;’)
t=1 n=1 t=1 n=1jk=
T,N T.N
2.5 <A Y <A

I t=1,n=1 I t=1,n=1 E



Solving Disjunctive Program
using Branch and Bound

Example: TN K )
t/:\ln/z\lkvlh _gt (é; )
= (G, V)N (G, vEy)

T=2,N=LK=2 C,={"x<g*-—m*s")

Convex Disjunctive Programming

mm J'(u,)
T N K

SIt. AN AV
t=1 n=1 k=1

hnkT—

—gt

October
29th, 2015

Risk Bounded Goal

i
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Stochastic DLP Branch and Bound

Repeat until no clauses left:
1. Select clause.
2. Split on disjuncts.

(G, vCL) A (G, vE,,)
Ci (G, v(E,,) C, A (G, v ()
// \\ // \\
C NG, C i ACy, C,AnGCy, Ci, ACy,

Convex Optimization Problems

October

Risk Bounded Goal-directed Motion Planning

29th, 2015



Stochastic DLP Brancp and Bound

Repeat until no clauses left:

1. Select clause.
2. Split on disjuncts.

(enZenre

/\

Ci A (G, v(Ey,)

October
29th, 2015

Fixed schedule

\

t=1

™~

rd

Waypoint

start Convex, chance-constrained

» NGy v

C5,)

C i ACy, C,AnGCy,

N

N\

Ci, ACy,

Convex Optimization Problems

Risk Bounded Goal-directed Motion Planning



Bound Sub-Problems
Through Convex Relaxation

Bound: Remove all disjunctive clauses [Li & Williams 2005].
Issue: Computing bound is slow!!

Cause: Sub-problems include constraints.
C A6 C, NG E)
SN &% CiAC,, C,AC,, ConGCy,

October
29th, 2015
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B&B Subproblem (non-linear)

Iil.in J(u.;)

st. V x,., =Ax, +Bu,+w,

0<t<T-1

ma V(0,2
( ’ t) Nonlinear
[(Xg>200) Z
0 0\_’0@ )_C _gtz(t) Y i(t)(é,t )\)
A, 0.20

October
29th, 2015
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B&B Subproblem Relaxation (Linear)

min J (v, )
uy.r
s.t. V. x,_,=Ax,+Bu, +w,
0<r<T—-1
W, ~ N(Oazt) |
Fixed Risk Nonlinear
Relaxation xO — N(.XO, . ()) ‘‘‘‘‘ Z\
5=A| x
- l(l‘)T— i(t) l i(t) \
‘ - lh gl‘ \\ (é‘t )//'
T Se___-
A5 >0
=1

October
29th, 2015
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B&B Subproblem Relaxation (Linear)

Iilin J ()
LT
st. YV x,,=Ax,+Bu,+w,
0<¢t<T-1
w, ~ N (0, 2,)
Fixed Risk _
Relaxation xO ~ N(xo : 2 ) o Z
é; — A Tlhz(t)T— gtz(t) ‘ z(t) (A) \\,\'
t= \ ,

-
SN ——

e All constraints are linear (FRR is typically LP or QP).

October
29th, 2015
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FRR Intuition

Original problem

Goal

Safety margin

Start

FRR

Sets safety margin for all
constraints to max risk A.

Goal

FRR Safety margin
Start

Results in an infeasible solution to the original problem.

Gives lower bound on the cost of the original problem.

October
29th, 2015
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Problems
Fixed sc\hedule \

t=1 /Goal

Waypoint

Start
Convex traj opt

X e
. \/ .
Fixed schedule Simple temporal —> [2 4]
\ constraints
=35
= /
Goal [1 3]
r=1 v ,J
Obstacle Obstacle
Waypoint Waypoint

Start

_ convex, traj opt gualitative state plan




APPENDIX: OVERVIEW AND
ALTERNATIVE APPROACHES
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What are the uncertainties and risks?

October
29th, 2015
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Robust Model Predictive Control

e Receding horizon (MPC) planners react to uncertainty
after something goes wrong.

* Can we take precautionary actions
before something goes wrong?

eAli A. Jalali and Vahid Nadimi, “A Survey on Robust Model Predictive Control from
1999-2006.”

October . . . .
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Robust versus Chance Constrained
Wind speed No FIy Zone

[= ‘

s

c

O

O — e o

)
» © \ =2
3 8 . 2 * Predicted posmon has bounded uncertainty.
DO: E Assume bounds on » Problem: Find control sequence that satisfies

uncertainty. constraints for all realizations of uncertainty.

8 Wind speed NO Fly Zone
{=e 4y
T Q0%
» O / =
< 0O AR,
(@) A %4 e -
o O -
2O 3%
© o -
© 8 » Predicted position has probabilistic uncertainty.
£ & Assume probabifity « Problem: Find control sequence that satisfies
O Q. distribution that ' i

constraints within a probability bound
29th, 2015 (Chance Constraint). 92



Incorporating Uncertainty

w, eW

Deterministic discrete-time LTI model.

yu
xt+1 — t T But

* Additive uncertainty

X, ,=Ax,+Bu, +w, - NG D
* Multiplicative uncertainty PV =V W X

x,,, =(A+AA)x, + Bu,

h
U A
s

i

it AR
ﬂ’ff:*;‘t‘q’i l“:"l"‘:i i
it A
JJ"‘i':':JPD

el

! B
o i
Kt e E !
“H.u‘.:‘t:‘t:.‘; (i
o

hihh

s
A
oot
S
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What to Minimize? (Bounded Uncertainty)

* Minimize the worst case cost

mm max J(X,U)
s.t. WEW V h'x <g

w € W : Bounded uncertainty

* Minimize nominal cost
m&n J(X,U):Cost whenw=0
st ¥ Wh’Tx <g
w € W : Bounded uncertamty

October
29th, 2015
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What to Minimize? (Stochastic Uncertainty)

* Utilitarian approach

min J(X, U)+ pf (U)

Penalty (constant) Probability of failure

* Chance constrained optimization

m&n J(X,U)
st. f(U)<A

Probability of failure \ Risk bound

October
29th, 2015
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Solution Methods for

Chance-Constrained Problems

 Sampling based methods

— Scenario-based
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
* Ono and Williams, 2008

October
29th, 2015
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Particle Control

1. Use particles to sample random variables.

Xy~ p(x.,) v?~pWv,) i=1..N t=0...F

Goal Region

Obstacle 1

Initial state distribution.
\ Obstacle 2

Particles approximating
initial state distribution.

October
29th, 2015
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Particle Control

2. Calculate future state trajectory for each particle, leaving explicit

dependence on control inputs u.p;. (% i

C

(l) x 0 O |

f (uOt 1>Xc,00YVor1 Xeor =| -
(z)

. Goal Region
Particle 1 foru =ug §
~

Obstacle 1

t=4

Particle 1 foru=u,

E—

Obstacle 2

October ! ! ! !
29th, 2015 Risk Bounded Goal-directed Motion Planning




Particle Control

2. Calculate future state trajectory for each particle, leaving explicit,
dependence on control inputs u,.p.;.

Particles /...N o0 5.0 | Goal Region

foru=ug ~—_

Particles 1...N
foru=u,

Obstacle 2

October
29th, 2015
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Particle Control

3. Express chance-constraints of optimization problem approximately in
terms of particles.

LB4

Goal Region

Probability of failure
approximated by the
fraction of failing
particles.

True expectation
approximated by
sample mean of cost
function:

E[h(Uge_1 X6)]

Sample mean

N
. o .
approximates ~—T—— a°9§°°°o ~ 1 (i)
03 oo = ~ — h u X
\ o O o t 2 OF_l, :LF
state mean. 2%% Obstacle 2 N “ :
°8%°o’ T =
> =
R t=0

October

Risk Bounded Goal-directed Motion Planning
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Particle Control

4.  Solve approximate deterministic optimization problem for u,; ;.

0=0.1

Goal Region
10% of particles fail in —_
optimal solution.

Obstacle 2

October
29th, 2015
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Convergence

—  As N—>©9, approximation becomes exact.

Goal Region

Obstacle 2

October
29th, 2015
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Convergence

—  As N—>©9, approximation becomes exact.

Goal Region

10% probability of
failure. N

Obstacle 2

October
29th, 2015
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Solution Methods for

Chance-Constrained Problems

 Sampling based methods

— Scenario-based
e Bernardini and Bemporad, 2009

— Particle control
* Blackmore et al., 2010

* Non-sampling-based methods

— Elliptic approximation
(direct extension of robust predictive control)

* van Hessem, 2004

— Risk allocation
* Ono and Williams, 2008

October
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Elliptic Approximation
No Fly

Chance constraint:

Risk < 1%

1. Derive probability distribution over future states as a
function of control inputs.

Note: When planning in an N-dimensional state space over time steps,
a joint distribution over an N-dimensional space must be considered.

October
29th, 2015
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Elliptic Approximation

Chance constraint: NO Fly Z0ne
Risk < 1%

1. Derive probability distribution over future states as a
function of control inputs.

2. Find a 99% probability ellipse.

October
29th, 2015
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Elliptic Approximation

Chance constraint: NO Fly Z0ne
Risk < 1%

1. Derive probability distribution over future states as a
function of control inputs.

2. Find a 99% probability ellipse.

Find control sequence that makes sure the probability
ellipse is within the constraint boundaries.

October
29th, 2015
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Conservatism of Elliptic Approximation
No Fly Zone

Issue: often very
conservative

Real probability
of failure — f p(x)dx

/\ \
Probability density function

< 1—] p(x)dx = 1%
O

October
29th, 2015
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Conservatism of Elliptic Approximation
No Fly Zon

Issue: often very
conservative.

Conservatism = [ p(x)dx
0

October
29th, 2015
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