Constraint Programming II:
Solving CPs using
Propagation and Basic Search

Slides draw upon material from: Brian C. Williams

6.034 notes, by Tomas Lozano Perez; .

AIMA, by Stuart Russell & Peter Norvig; Enrlque Fernandez

Constraint Processing, by Rina Dechter. 16.410/413
October 28t 2015

10/27/15

Assignments

« Remember:
* Problem Set #6: Out today. Due next Wednesday
* Project Part 1 (16.413): Due on Nov 6th

» Reading:
* Today and Monday:
[AIMA] Ch. 6.2-5; Constraint Satisfaction.

* To Learn More: Constraint Processing, by Rina Dechter.
* Ch. 5: General Search Strategies: Look-Ahead.
* Ch. 6: General Search Strategies: Look-Back.
* Ch. 7: Stochastic Greedy Local Search.

2
16.410/16.413 Fall 2015

Midterm results

P1 P2 P3 Total
Max 42 31 30 93
Min 12 4 0 35
Avg 31 20 18 69
Median 32 21 18 70
Std 6.45 7.73 6.36 14.98
#0 0 0 1 0

16.410/16.413 Fall 2015

1-A 1B 1-C 1-D P1(Total)

Max 5 15 10 12 42
Min 1 7 0 0 12
Avg 5 12 5 9 31
Median 5 13 4 11 32
Std 0.94 2.61 3.73 3.56 6.45
Os 0 0 5 1 0

16.410/16.413 Fall 2015

2-A 2-B 2-C P2 (Total)

Max 8 8 15 31
Min 0 0 0 4
Avg 6 5 10 20
Median 7 5 12 21
Std 2.66 2.43 5.14 7.73
Os 1 3 1 0

16.410/16.413 Fall 2015

3-A 3-B P3 (Total)

Max 15 15 30
Min 0 0 0
Avg 10 7 18
Median 10 8 18
Std 3.68 4.92 6.36
Os 1 6 1

16.410/16.413 Fall 2015

Constraint Problems are Everywhere

O | 3—4 ODIWVINIT |~
S| OIN]IYIMOIN]JO|OO|WO
TITOIMNIOIN|OJO | M | <
T + |
MHOINjlojl|jOo|lNlgF | O
N|O VIO | T | T IO~ M
DY ITIO|MNN|OIWOL N |CO
| + + 4
OIM|lOoIdMNODIOIY | S| N
DI OIN|Y O~ |]O |
MNANITYTJO|O0O|STIO L |O
O ™ 5_ N~
MM~ wn
O | NN
I =+ +
™ <t i
nlIoe, pzadl [0 e
(@) <t ©
— 2 =1 |
ToRNe)
L N |
M~ O ™ (@)}
. . e

(b) The Solution

(a) Sudoku Puzzle

16.410/16.413 Fall 2015

Constraint Satisfaction Problems (CSP)

Input: A Constraint Satisfaction Problem is a triple <V,D,C>, where:
* Vis a set of variables V;,
* D is a set of variable domains,
* The domain of variable V,is denoted D;,
« C =is a set of constraints on assignments to V,
« Each constraint C, = <S,,R> specifies allowed variable assignments,
« S, the constraint’ s scope, is a subset of variables V,
* R, the constraint’ s relation, is a set of assignments to S..

Output: A full assignment to V, from elements of V' s domain,
such that all constraints in C are satisfied.

V? v={v1,Vv2,V3}
Different-color constraint D,? D;={R,GB}

C12? C12 = {<R,G>,

<G, R>,
16.410/16.413 Fall 2015 <B, R>, <B, G>}

Constraint Modeling (Programming) Languages

Features Declarative specification of the problem that
separates the formulation and the search strategy.

Example: Constraint Model of the Sudoku Puzzle in

Number Jack (http://4c110.ucc.ie/numberjack/home).

matrix = Matrix(N*N,N*N,1,N*N)
sudoku = Model([AlIDiff(row) for row in matrix.row],
AlIDiff(col) for col in matrix.col],
AlIDiff(matrix[x:x+N, y:y+N].flat)
for x in range(0,N*N,N)
for y in range(0,N*N,N)])

16.410/16.413 Fall 2015

https://web.archive.org/web/20090826170318/http://4c110.ucc.ie/numberjack/home

Constraint Problems are Everywhere

(a) Sudoku Puzzle

16.410/16.413 Fall 2015

10

N-Queens

Place queens so that no 1+ T q
gueen can attack another. 2 Q
. 3[aZ >
Encoding 4 \ 3

« Assume one queen percolumn. 1 2 3 4
* Determine what row each queen should be in.
Variables Qq, Q,, Q3, Q4.
Domains {1, 2, 3, 4}.

Constraints Q<> Q ”On different rows”.

1Q;- Q| <> |i-]] ”Stay off the diagonals” .

Example C;,={(1,3) (1,4) (2,4) (3,1) (4,1) (4,2)}.

Outline

» Arc-consistency and constraint propagation.

 Analysis of constraint propagation.
» Solving CSPs using search.

16.410/16.413 Fall 2015

12

Good News / Bad News

Good News - Very general & interesting family of problems.

- Problem formulation used extensively in
autonomy and decision making applications.

Bad News Includes NP-Hard (intractable ?) problems.

16.410/16.413 Fall 2015

Algorithmic Design Paradigm

Solving CSPs involves a combination of:

1. Inference

« Solves partially by eliminating values that
can’'t be part of any solution (constraint propagation).

 Makes implicit constraints explicit.

2. Search

* Tries alternative assignments against constraints.

16.410/16.413 Fall 2015 14

N-Queens

Inference

Eliminate values that can’t be part
of any solution

Search

P OODN =

Try alternative assignments

against constraints

Q?

Q?

16.410/16.413 Fall 2015

15

Arc Consistency

|dea: Eliminate values of a variable domain
that can never satisfy a specified constraint (an arc).

X, {<1,3>,<1,4>,<2,1>} X,

Definition: arc <x;, x> is arc consistent if <x;, x;> and <x;, x;> are

directed arc consistent.
16.410/16.413 Fall 2015
16

Arc Consistency

16.410/16.413 Fall 2015

Directed Arc Consistency
X, {<1,3>,<1,4>,<2,1>} X,

Definition: arc <x;, x> is directed arc consistent if

« forevery a, in D,
* there exists some a| in DJ- such that

- assignment <a;, a;> satisfies constraint C;,

oV a; e Di! 3 aj e Dj such that <a, aj> e C'J

 V denotes “for all,” 3 denotes “there exists” and € denotes “in.”

18
16.410/16.413 Fall 2015

Revise: A directed arc consistency procedure

Definition: arc <x;, x;> is directed arc consistent if
V a,€ D, da,; €D, such that <a;, a> € C;.

Revise (x;, X))
Input: Variables x; and x; with domains D, and D; and constraint relation R;.
Output: pruned D;, such that x; is directed arc-consistent relative to x;.

1. for each a €D,

2 if there is no a, € D, such that <a;,, a> € R,
3. then delete a, from D..

4 endif

5. endfor

Constraint Processing,
by R. Dechter
pgs 54-56.

19

16.410/16.413 Fall 2015

Directed Arc Consistency

Revise(X4, X»):

X, {<1,3>,<1,4>,<2,1>} X,

Now arc <x4, X,> Is directed arc consistent.

Definition: arc <x;, x> is arc consistent if <x;, x;> and <x;, x;> are

directed arc consistent.

Definition: Problem is arc consistent if all pairs of variables are
arc consistent.

20
16.410/16.413 Fall 2015

Full Arc Consistency over All Constraints
via Constraint Propagation

Definition: arc <x;, x> is directed arc consistent if

V a,€ D, 33 €D, such that <a;, a> & C;.

Constraint Propagation:
To achieve (directed) arc consistency over CSP:
1. For every arc C; in CSP, with tail domain D;, call Revise.
2. Repeat until quiescence:
If an element was deleted from D, then
repeat Step 1. (AC-1)

16.410/16.413 Fall 2015
21

Full Arc-Consistency via AC-1

AC-1(CSP)
Input: A constraint satisfaction problem CSP = <X, D, C>.
Output: CSP’, the largest arc-consistent subset of CSP.

1. repeat

2. foreveryc;eC, For every arc,

3 Revise(x;, X;) prune head

4. Revise(x;, x) and tail domains.

S en dfO r Constraint Processing,
6. until no domain is changed. by R. Dechter

pgs 57.

16.410/16.413 Fall 2015

Full Arc Consistency
via Constraint Propagation

Definition: arc <x;, x> is directed arc consistent if

V a,€ D, 33 € D, such that <a;, a> & C; .

Constraint Propagation:
To achieve (directed) arc consistency over CSP:
1. For every arc C; in CSP, with tail domain D;, call Revise.
2. Repeat until quiescence:
If an element was deleted from D, then
repeat Step 1,
OR call Revise on each arc with head D.

(use FIFO Q, and remove duplicates).

16.410/16.413 Fall 2015

23

Full Arc-Consistency via AC-3 (Waltz CP)

AC-3(CSP)
Input: A constraint satisfaction problem CSP = <X, D, C>.
Output: CSP’, the largest arc-consistent subset of CSP.

Constraint Processing,
by R. Dechter
pgs 58-59.

1. forevery c; € C,

2 queue < queue U {<x;, X;>, <X;, X;>}

3. endfor

4. while queue # {}

5. select and delete arc <x;, x> from queue
6 Revise(x;,)

I4

8

9

1

if Revise(x;, x;) caused a change in D

then queue — queue U {<x,, x> |k # i, k# |}
endif
0. endwhile

16.410/16.413 Fall 2015

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Each undirected arc denotes two directed arcs.

16.410/16.413 Fall 2015

25

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined

Value deleted

......... -Different-color constraint

A
(R,GB)

Arcs to examine

Vi—= Vo, Vi—= V3, Vo= V3

* Introduce queue of arcs to be examined.

 Start by adding all arcs to the queue. 2

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

A
(R,GB)

Arcs to examine

Vi—= Vo, Vi—= V3, Vo= V3

* V-V, denotes two arcs, between V;and V..

* V; >V, denotes an arc fromV,toV,. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
\'/
Ce "

Arcs to examine

Vo> V4, Vi— V3, V= V5

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* Vi >V, denotes an arc fromV;to V,. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
V>V, none 3
\'/
Ce "

Arcs to examine

Vo> Vi, Vi— V3, V= V3

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* Vi >V, denotes an arc fromV;to V,. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
V>V, none 3
Vv

Arcs to examine

Vi— Vs, Vo= Vs

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* V; >V, denotes an arc fromV;to V,. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
V>V, none 3
Vv

Arcs to examine

Vi— Vs, Vo= Vs

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* Vi >V, denotes an arc from V;to V. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
V-V, none 3
\'/
Ce "

Arcs to examine

V1 - V3! V2_ V3

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* V; >V, denotes an arc fromV;to V. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted Vi
V-V, none @
v £ >
Yz Vs Go—C O™

Arcs to examine

V3> V4, Vy—V;

* Delete disallowed tail values. < V;—V, denotes two arcs, between V;and V..

* Vi >V, denotes an arc fromV;to V,. =

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted
Vi—V, none
Vi>V; V1(G)
Arcs to examine
V3>V, Vo—V;
IF An element of a variable’ s domain is removed,

THEN add all arcs to that variable to the examination queue.

34

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V, none

Vi> Vs V1(G)

Arcs to examine
L

V3>V, Vo—V;, V> Vh)’))/\h

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

35

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v a
V12 Vs (O D"

V3>V,

Arcs to examine

Vyo— V3, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

36

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v a
V12 Vs (O D"

Vi3>V, none

Arcs to examine

Vyo— V3, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

37

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v a
Vi-Vs V+(©) <>

Arcs to examine

V,— V3, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

38

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

V,> V,

Arcs to examine

V3>V, Vo>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

39

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V, none
Vi—V; V1(G)
V2>V, V2(G)

Arcs to examine

V3> V3, Vo>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

40

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V, none
Vi—V; V1(G)
V2>V, V2(G)

Arcs to examine

V3>V, Vo>V, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

41

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V, none
Vi—V; V1(G)
V2>V, V2(G)

Arcs to examine

V3>V, Vo>V, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

42

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo> V3 V2 (G)
V3>V,
Arcs to examine
Vo>Vq,Vi>V,
* Delete unmentioned tail values.
IF An element of a variable’ s domain is removed,

43

THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo> V3 V2 (G)
V;>V, none
Arcs to examine
Vo>Vq,Vi>V,
* Delete unmentioned tail values.
IF An element of a variable’ s domain is removed,

44

THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo—V; V,(G)

Arcs to examine

Vo>V, V>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

45

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo—V3 V2 (G)
V,>V,
Arcs to examine
V1>V,
* Delete unmentioned tail values.
IF An element of a variable’ s domain is removed,

THEN add all arcs to that variable to the examination queue. *

16.410/16.413 Fall 2015

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo—V; V,(G)

V,>V, none

Arcs to examine

Vi>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

47

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo—V; V,(G)
Vo> Vy none
V,>V, Arcs to examine

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

48

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V; none y 3
Vi-Vs V+(©) "

Vo—V; Vy(G)
Vo>V none
V,>V, V,(R) Arcs to examine

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

49

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V; none y 3
Vi-Vs V+(©) "

Vo—V; Vy(G)
Vo>V none
V,>V, V,(R) Arcs to examine

Vo> V,, V3>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

50

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi—V, none v 3
Vi-Vs V+(©) "

Vo—V; V,(G)

V-V, Vi(R)

Arcs to examine

Vo> V,, V3>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

51

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo— V3 V2(G)
V-V, V1(R)
V,> V, Arcs to examine
V3>V,
* Delete unmentioned tail values.
IF An element of a variable’ s domain is removed,

THEN add all arcs to that variable to the examination queue. *

16.410/16.413 Fall 2015

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v 3
Vi-Vs V+(©) "

Vo— V3 V2(G)
V-V, V1(R)
V,> V, none Arcs to examine
V3>V,
* Delete unmentioned tail values.
IF An element of a variable’ s domain is removed,

53

THEN add all arcs to that variable to the examination queue.

16.410/16.413 Fall 2015

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v a
Vi-Vs V+(©) "

Vo—V; V,(G)

Vo=V V41(R)

V, >V, none Arcs to examine
V3>V,

* Delete unmentioned tail values.

IF An element of a variable’ s domain is removed,
THEN add all arcs to that variable to the examination queue.

54

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Arc examined | Value deleted

Vi
Vi—V, none v a
Vi-Vs Vi(©) "

Vo—V; V,(G)
Vo=V V41(R)
V, >V, none Arcs to examine
V3>V, none
IF examination queue is empty

THEN arc (pairwise) consistent. 55

Outline

» Arc-consistency and constraint propagation.
 Analysis of constraint propagation.
« Solving CSPs using search.

16.410/16.413 Fall 2015

What is the Complexity of AC-1?

AC-1(CSP)

Input: A network of constraints CSP = <X, D, C>.
Output: CSP’, the largest arc-consistent subset of CSP.
1. repeat

2 for every c; € C,
3 Revise(x;, x)
4, Revise(x;, x)
S endfor

6. until no domain is changed.

Assume:
 There are n variables.
 Domains are of size at most k.

* There are e binary constraints.

16.410/16.413 Fall 2015

57

What is the Complexity of AC-1?

Assume:

* There are n variables.

 Domains are of size at most k.

* There are e binary constraints.

Which is the correct complexity?

1.

2
3.
4

O(k?),
O(enk?),
O(enk3),
O(nek).

16.410/16.413 Fall 2015

58

Revise: A directed arc consistency procedure

Revise (x;, X;)
Input: Variables x; and x; with domains D, and D; and constraint relation R;.
Output: pruned D;, such that x; is directed arc-consistent relative to x;.

O(k)
1. for each a, €D,
2 if there is no a, € D, such that <a;, a> € R; * O(k)
3. then delete a, from D..
4 endif
5. endfor

Complexity of Revise?
= O(k?).

where k = max_|D |
i

16.410/16.413 Fall 2015
59

Full Arc-Consistency via AC-1

AC-1(CSP)
Input: A network of constraints CSP = <X, D, C>.
Output: CSP’, the largest arc-consistent subset of CSP.
1. repeat
2. foreveryc; €C, O(2erevise)
3 Revise(x;, x)
4, Revise(x;, x)
S endfor
6. until no domain is changed. " Olnk)
Complexity of AC-1?
= O(nk*e*revise),
= O(enk3),
where k = max; |Dl,
16.410/16.413 Fall 2015 n=]|X|,e=|C|.

60

What is the Complexity of
Constraint Propagation using AC-3?

Assume:

* There are n variables.

Domains are of size at most k.

* There are e binary constraints.

Which is the correct complexity?

1.

2
3.
4

O(k?),
O(ek?),
O(ek3),
O(ek).

16.410/16.413 Fall 2015

61

Full Arc-Consistencyvia AC-3

AC-3(CSP)
Input: A network of constraints CSP = <X, D, C>.
Output: CSP’, the largest arc-consistent subset of CSP.

1. forevery c; €C, Ofe) +

2. queue «— queue U {<X;X>, <X;,X;>}

3. endfor

4. while queue # {}

3 select and delete arc <x;, x> from queue

6 Revise(x;, x) O(k?)

7. if Revise(x,, x;) caused a change in D,. * O(ek)
8 then queue «— queue U {<x,x>|k # i, K# j}

9 endif

10. endwhile

Complexity of AC-3?
= O(et+ek*k?) = O(ek3), wherek = max. lDil’ n = |X|, e =|C|.

16.410/16.413 Fall 2015 62

Is arc consistency sound and complete?

An arc consistent solution selects a value for every variable
from its arc consistent domain.

Soundness: All solutions to the CSP are arc consistent
solutions?

*Yes,
* No.

Completeness: All arc-consistent solutions are solutions to the
CSP?

" Yes, (R G

* No.
d@’@

16.410/16.413 Fall 2015 63

Incomplete: Arc consistency doesn’ t
rule out all infeasible solutions

Graph
Coloring

® Arc consistent, but
- no solutions.

Arc consistent, but
2 solutions, not 8.

o 565

16.410/16.413 Fall 2015
64

To Solve CSPs We Combine

1. Arc consistency (via constraint propagation):

« Eliminates values that are shown locally to not be a
part of any solution.

2. Search:

« Explores consequences of committing to particular
assignments.

Methods that Incorporate Search:

« Standard Search,

« Back Track Search (BT),

« BT with Forward Checking (FC),

* Dynamic Variable Ordering (DV),

« |terative Repair (IR),

« Conflict-directed Back Jumping (CBJ).

65

Solving CSPs using Generic Search

o State .
* |nitial State .
» Operator .
e Goal Test

« Branching factor?

=>» Sum of domain size of all variables O(|v|*|d|). V,

 Performance?

Partial assignment to variables,
made thus far.

No assignment.

Creates new assignment = (X = v;).

» Select any unassigned variable X .

* Select any one of its domain values v; .
Child extends parent assignments with new.

All variables are assigned.
All constraints are satisfied.

= Exponential in the branching factor O([|v|*|d|]V)). 66

Search Performance on N Queens

11t |a
2 Q
3[aZ >
4 Q
Standard Search, * A handful of queens.

Backtracking.

16.410/16.413 Fall 2015

67

Solving CSPs with Standard Search

Standard Search:
« Children select any value for any variable [O(|v|*|d|)].
« Test complete assignments for consistency against CSP.

Observations:
1. The order in which variables are assigned does not change the solution.
 Many paths denote the same solution,

© (V).

= Expand only one path (i.e., use one variable ordering).

1. We can identify and prune a dead end before we assign all variables.

« Extensions to inconsistent partial assignments are always
inconsistent.

= Check consistency after each assignment.
Va2

16.410/16.413 Fall 2015

Next: Back Track Search (BT)

1. Expand assignments of one variable at each step.
2. Pursue depth first.

3. Check consistency after each expansion, and backup.

V, assignments

V, assignments

V3 assignments

Preselect order Assign
of variables to designated
assign. variable.

16.410/16.413 Fall 2015 69

asin33
Oval

asin33
Oval

asin33
Oval

MIT OpenCourseWare
https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

