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Lecture 2: Rocket Nozzles and Thrust 
 

 
Rocket Thrust (Thermal rockets) 
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 In general then, define 
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If things are nearly constant on spherical caps, modify control volume to 
spherical wedge: 
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and use  
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Also, since const on the exit surface,  =eP =e eP P  
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Energy Considerations 
 
 
So, momentum balance gives the Thrust Equation. What does an Energy Balance 
give? 
 
Start with a near-stagnant flow in the upstream plenum (“combustion chamber”, or 
“nuclear heater” or “arc heated plenum”). The total specific enthalpy 

21
2

= + ≅tc c c ch h hυ  may be different for different streamlines, due to combustion 

“streaks:, arc constriction, etc., But along the flow expansion in the nozzle, ht is 
conserved for each streamline. At the exit, 
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For a well-expanded nozzle, with large area ratio, he→ o by adiabatic expansion, and 

eυ  tend to a max. υ = 2e MAX tc
h . In any real, finite expansion, he o, so some of 

 is wasted as thermal energy in the exhaust. Define a nozzle efficiency
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Since Pe uniform, so is ≅ Nη , even when  is not. Also, 

ct
h υe  is non-uniform if  is 

(in proportion to 
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h ). 

 
 
The Jet Power is the kinetic energy flow out of the nozzle 
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Effect of Stagnation Enthalpy Non-uniformities 
 
 
Consider a case where  varies from streamtube ( ) to streamtube (but 

Pe=const., so 
ct

h �dm

Nη = const.). Then 
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For Pa = o (vacuum operation) and PaAe << F (large expansion), (or if Pe = Pa) 
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Define an “efficiency” = UNIF
UNIF

ACTUAL

P
P

η  (for a given thrust) 

 
Now, express in general F by (1) and P by (2) 
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Equality applies only when 

�
υ  is a constant, i.e.,  =const. This proves the “ansatz”. 

ct
h

   50% of flow has  = 0.5 
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Example:  
   50% of flow has  = 1.5 
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UNIFη =  (6.7% energy loss due to nonunif. 

 
 
Important in arcjets, less in film-cooled chemical rockets. 
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