
16.512, Rocket Propulsion  
Prof. Manuel Martinez-Sanchez 

Lecture 7: Convective Heat Transfer: Reynolds Analogy 
 

 
Heat Transfer in Rocket Nozzles 
 
General 
 
Heat transfer to walls can affect a rocket in at least two ways: 
 

(a) Reducing the performance. This tends to be a 1-3% effect on  only, and is 

therefore secondary. 
spI

(b) Creating great difficulties in the design of hot-side structures that have to 
survive heat fluxes in the  range. 7 810 10 w /m− 2

 
The principal modes of heat transfer to nozzle and combustor walls are 

convection and radiation. Of these, convection dominates, and radiation tends to be 
important only for particle-laden flows from solid propellant rockets. 
 
 
Convective Heat Transfer 
 
We will review here the compressible 2D boundary layer equations in order to extract 
information on wall heat transfer. 
 

 
 
 
The governing equations are (in the B.L. approximation) 
 
 

Continuity  
( ) ( )u v

0
x y

∂ ∂
+

∂ ∂

ρ ρ
=  (1) 

 

X-Momentum  xyu u p
u v

x y x y y y

∂τ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = = µ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

ρ ρ u
⎟  (2) 

 

Y-Momentum  
P

0
y
∂

=
∂

 (3) 
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Total enthalpy  ( )t t
xy

h h T
u v u k

x y y y
∂ ∂ ⎛ ⎞

y
∂ ∂ ∂

+ = τ + ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
ρ ρ ⎟  (4) 

 
 

 where 
2

t
u

h h
2

= +  is the specific total enthalpy, and µ  is the viscosity. For a 

laminar flow, ( )Tµ = µ  is a fluid property. Rocket boundary layers are almost always 

turbulent, and µ  is then the “turbulent viscosity”, where momentum transport is 
effected by the random motion of turbulent “eddies”. If these eddies have a velocity 
scale u'  and a length scale l ' , we have, in order-of-magnitude. 

 

turb.
u'l 'µ ∼ ρ  (5) 

 
where u'  is some fraction of the local u, and l ' tends to be of the order of the wall 
distance y. The important points about (5) are 
 
(a) 

turb.
µ µ� , mostly because l ' mean free path and �

(b) 
turb.

µ  is proportional to density (whereas µ  is not, because the m.f.p. is inversely 

proportional to ρ ). 
 
 
 Similarly, the last term on the right in the energy balance, representing the 
convergence of heat flux, contains the “turbulent thermal conductivity” ρ∼ pK c u'l ' . 

Once again, we notice that K is here proportional to density. We also note that the 
“turbulent Prandtl number” 
 

 t p
r

t

c
P

k

µ
= ∼ 1  (from the orders of magnitude) 

 
It is of some interest to note the origin and composition of the viscous term in 
equation (4). If we collect the dot products tu τ

G G
i  around a fluid element as shown (in 

B.L. approximation),  
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we obtain the term ( xyu
y
∂

τ
∂

)  as written in (4). This can be expanded as  

 

 ( )
2

xy
xy xy

u u
u u u

y y y y y

∂τ ⎛ ⎞ ⎛∂ ∂ ∂ ∂
τ = + τ = µ + µ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

u
y
⎞∂
⎟∂ ⎠

    (6) 

 
The 1st term in (6) is just the velocity times the viscous net force per unit volume, so 
it is the part of the total viscous work that goes to accelerate the local flow. The 
second term in (6) is positive definite, and it is the rate of dissipation of energy into 
heat due to viscous effects. We will return later to this heating effect. 
 
Approximate Analysis Let us manipulate the right hand side of equation (4): 
 
 

 
u T u K

u K u
y y y y y y y

T⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂
µ + = µ +

⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ µ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎟
⎠⎣ ⎦

 

 
 

and, since p
h

c
y y
∂

=
∂ ∂

T∂
, this yields 

 
2

p
r

r

u c1 h2 P
y y P y k

⎡ ⎤⎛ ⎞∂ µ⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟µ + ≡⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

 
We note here that, both for laminar and turbulent flows, P  is a constantr , 
independent of P and T to a good approximation. In fact, as we noted before, it is 
also of order unity (  for turbulent flows). So, the RHS of the energy equation 
becomes 

0.9∼

 

 
2

r

h u
y y P 2

⎡ ⎤⎛ ⎞∂ ∂
µ +⎢ ⎜⎜∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎥⎟⎟

1

        (7) 

 
 
If we made the approximation Pr = , then this would reduce  

further to th
y y

∂⎛ ⎞∂
µ⎜∂ ∂⎝ ⎠

⎟  with 
2

t
u

h h . If in addition
2

= + , we made  approximations 

the “flat plate” approximation 
P

0
x
∂
∂

� , then the pair of equations  

(1), (4) would become 
 
 

 
t t

u u u
u v

x y y y

h h h
u v

x y y y

⎫⎛ ⎞∂ ∂ ∂ ∂
+ = µ

t

⎪⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎬

∂ ∂ ∂⎛ ⎞∂
⎪

⎪+ = µ⎜ ⎟⎪∂ ∂ ∂ ∂⎝ ⎠⎭

ρ ρ

ρ ρ
      (8) 
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These are identical equations for u and . The same equation would also govern the 
linearly transformed variables 

th

 

�
e

u
u ;

u
=  � w

e w

t t

t t

h h
h

h h

−
=

−
       (9) 

 
where the ( )e  subscript denotes the value of a variable in the local “external” 

flow (just outside the boundary layer). Both �u  and �h  satisfy identical boundary 
conditions: 
 
  � �wwu h 0;= = � �eeu h 1= =        (10) 
 
and, as noted, identical governing equations. We conclude that, under the 
assumption 
 

 r
P

P 1, 0
x
∂⎛ ⎞

= =⎜ ⎟∂⎝ ⎠
, 

 
 

 
e

t w

t w

h h u
h h u

−
=

− e

         (11) 

 
2
wwhere we also noticed tw w w

u
h h . This similarity relation between velocity 

and total enthalpy profiles is known as Crocco’s analogy

h
2

= + =

. 
 
 
Approximate heat flux at the wall 
 
We are interested in the magnitude of the wall heat flux 
 

w
w

T
q K

y
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
         (12) 

 
  

 t
w

p pw w

hK h K
q

c y c y

⎛ ⎞ ⎛ ∂∂
= = µ⎜ ⎟ ⎜⎜ ⎟ ⎜∂ µ ∂⎝ ⎠ ⎝

⎞
⎟⎟
⎠

 

 
  0, since u 0w =  

where we used 
2

t

w ww

h u h
h u

y y 2 y y

⎛ ⎞∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂
= + = +⎜ ⎟

w

h∂
⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎜ ⎟  

 
 
 
 

16.512, Rocket Propulsion   Lecture 7 
Prof. Manuel Martinez-Sanchez   Page 4 of 16 



The group 
p r

K 1
c P

=
µ

 should be set equal to unity, for consistency with the stated 

approximations. Thus  
 

t
w

w

h
q

y
∂⎛ ⎞

= µ⎜ ⎟∂⎝ ⎠
 

 
Use now equation (11): 
 

( ) e

e

t w
w w t w

e e ww

h hu u
q h h h

y u u

−⎛ ⎞⎡ ⎤ ⎛ ⎞∂ ∂
= µ + − = µ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦⎝ ⎠ y

 

 

and notice that 
w

u
y

⎛ ⎞∂
µ⎜ ⎟∂⎝ ⎠

 is the wall shear stress, wτ . So  

 
 

et w
w

e

h h
q

u

−
= wτ         (13) 

 
 
which is also called Reynolds analogy. A more compact form of this can be written in 
terms of the Friction Coefficient 
 

 w
f

2
e e

c
1

u
2

τ
≡

ρ
         (14) 

 
and the Stanton number 
 

 
( )e

w
t

e e t w

q
S

u h h
=

−ρ
        (15) 

 
with the result (from (13)) 
 

 f
t

c
S

2
=          (16) 

 
One important point can be made about the result (13): 
 
The heat flux to the wall is driven by the enthalpy (or temperature) difference 
between Total external and Wall values, not between static values. This can be non-
intuitive. Consider the situation near the exit of a highly expanded space nozzle, 
where the bulk temperature  may have dropped to, say, 300K due to the strong 
expansion from a chamber temperature of, say, 3000K. The wall could be made of 
Tungsten so as to be able to sustain relatively high temperature and cool itself by 
radiation to space, so  could be, say, 1500K. Is the nozzle wall being heated

eT

wT  or 
cooled by the 300K gas? The answer is that it is being heated, because 
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t ce
T T= = 3000K, while . Are we violating the 2nd Principle of 

Thermodynamics. Read on. 
w e

T 1500 T= < t

 
 
Simplified Profiles, Across the Boundary Layer 
 
 
To better understand this situation, let us return to Crocco’s analogy (equation 11) 

and write 
2

t
uh h 2= + , and solve for h: 

 

 ( )e

2

t w
e

u u
h h h

u 2
= − −         (17) 

 
This is a quadratic relationship between h and u. For low subsonic flows , so 
the last term is not strong, and the relationship becomes linear

th h�
 in the limit. 

 
 
The relationship between slopes at the wall flows from (17): 
 
  0 

( )et w
ew w

dh 1 du

w

h h
dy u dy

⎛ ⎞ ⎛ ⎞ ⎞
= −⎜ ⎟ ⎜ ⎟ ⎟

⎝ ⎠ ⎝ ⎠ ⎠

u
u

y
⎛ ∂

− ⎜ ∂⎝
 

 

or  et w

ew

h hdh
du u

−⎛ ⎞⎛ ⎞ = ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
⎟⎟

wh>

        (18) 

 
 
We can use (17) and (18) to sketch h vs. u across the boundary layer. For a case 
with h , this looks like e
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Note that whenever 
ee t wh> −

wh<

u h  there develops an intermediate temperature 

maximum. But in any case, the wall slope is as if the line were coming from h , not 

from h . The case when h  is more revealing even: 
et

e e

 
 

                 
 
 
Now the wall slope is seen to be positive (heat into the wall), despite h  (as 
long as h h ) 

e wh<

>t we

 
So, the quadratic portion of the Crocco relationship is responsible for the extra wall 
heat; this can in turn be traced to viscous dissipation, which accumulates in the 
boundary layer and elevates its temperature, so that the wall is heated even when 
the outside temperature is low (as long as the flow has high speed). 
 
Modification for P 1  r ≠

1<

1

 
We leave for now the issue of the non zero pressure gradient, except to note that it 
introduces small modifications down to the throat. The deviations of P  from unity 

are small, and, for gases P  (~ 0.9 for turbulent flow). This breaks the perfect 
balance between dissipation and conduction responsible for Crocco’s analogy, in the 
sense of favoring conduction of the dissipated heat. As a second consequence, the 
temperature overshoot is reduced, and so is the wall slope of T and the heat flux to 
the wall. The direct effect of higher conduction (P

r

r

r < ) is accounted for 
approximately by modifying Reynolds analogy to  
 
 

 f
t

r

c
S

2P 0.6
=          (19) 

 
 
The secondary effect (reduced overshoot) is accounted for by replacing the driving 
enthalpy difference h  by hte wh− haw w− , where h  is the “Adiabatic-wall enthalpy”, 

defined as  
aw
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2
e

aw e
u

h h r ; r 0.
2

= + � 9        (20) 

            (turbulent) 
 
and r is the “Recovery factor”. 
 
With these changes, the heat flux is now 
 

 ( ) f
w e e aw w

r

c
q u h h

2P 0.6
= −ρ        (21) 

 
 
The Bartz heat flux formula 
 
A very crude, but surprisingly effective representation for the friction factor  is that 
supplied by the well-studied case of fully developed turbulent flow in a pipe. 

fc

 

 f 0.2
e

0.046
c ;

R
=  e e

e
e

u D
R =

µ
ρ

       (22) 

 
where R  is the Reynolds number based on diameter D, and e eµ  is the laminar 
viscosity. Putting also h c constant, equation (21) now gives pT= +

 

    ( )
N

( ) (
0.2

0.8 0.2e
w e e p aw w e e e p aw w0.2

r e e
0.026

0.023 0.026 )c T T u c T T
P 0.6 u D D

⎛ ⎞µ
= − = µ −⎜ ⎟⎜ ⎟

⎝ ⎠
�

ρ ρ
ρ

q u  (23) 

It is common practice to define a heat transfer “gas-side film coefficient”, h  (not an 

enthalpy!) by 
g

 

 w
g

aw w

q
h

T T
≡

−
         (24) 

 
And, so far, we have  
 

 ( )0.8 0.2
g e e0.2

0.026
h u

D
= ρ e pcµ        (25) 

 
At this point we note that the formulation so far has ignored the strong variations of 
ρ  and  across the boundary layer since these quantities depend on temperature as  µ
 

 
1
T

∼ρ  (at P=constant) ; ( )wT w 0.6µ ∼ �      (26) 

 
A commonly used approach to including these variations is to replace eρ  and  in 
equation (25) by their values at some intermediate temperature <T>: 

eµ
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 e
e e

T
;

T
→

< >
ρ ρ  

w

e e
e

T
T

⎛ ⎞< >
µ → µ ⎜⎜

⎝ ⎠
⎟⎟      (27) 

 
and <T> can be evaluated by several empirical rules. For Mach numbers not much 
higher than 1, we can simply use  
 

 e wT T
<T>

2
+

�         (28) 

 
Making the replacements of (27) in equation (25), we obtain 
 

 ( )
0.8 0.2w

0.8 0.2e
g e e0.2

T0.026
h u

TD

−
⎛ ⎞

= ⎜ ⎟< >⎝ ⎠
ρ e pcµ      (29) 

 
which is one form of Bartz’ formula. A more useful form follows from the continuity 
equation: 
 

 c t
e e

P Am
u

A c * A
= =

i

ρ , with ( )Γ γ
g cR T

, 

 
and where A is the local cross-section, and  the throat cross-section. Substituting 

in (29), and using 

tA
2

t tA D
A D

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, the final form is 

 
 

 
0.8 1.8 0.8 0.2w

0.2c t e
g p e0.2

t

P D T0.026
h c

c * D TD

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= µ⎜ ⎟ ⎜ ⎟ ⎜ ⎟< >⎝ ⎠ ⎝ ⎠ ⎝ ⎠
    (30) 

 
 
Several important trends and observations can be made now: 
 

(a) Smaller throat diameter leads to larger heat flux 
0.2
t

1

D

⎛ ⎞
⎜⎜ . This comes 

straight from the Reynolds no. dependence of c . 

⎟⎟
⎝ ⎠
∼

f

 

(b) Heat flux is almost linear in chamber pressure ( )0.8
cP∼ . This limits the 

feasibility of high chamber pressures, which are otherwise very desirable. 
 

(c) Maximum heat flux occurs at the throat 
1.8

tD
D

⎛ ⎞⎛ ⎞⎜ . One critical design 

consideration is therefore the thermal integrity of the throat structure. 

⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∼
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(d) Lighter gasses lead to higher heat fluxes, through the combined effects of  

and  

pc

c * g 0.6

1
h

M

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼  

 

(e) The factor 
0.8 0.2w 0.68

eT T
T T

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟< > < >⎝ ⎠ ⎝ ⎠

� e  is greater than unity. This 

enhancement of heat flux follows mainly from the fact that the gas in the 
boundary layer is mostly cooler than in the core, hence denser. We showed 
before that the turbulent heat conductivity is proportional to density. 

 
 
Example 
 
Consider the Space Shuttle Main Engine (SSME), which is a Hydrogen-Oxygen rocket 
with (roughly) these characteristics: 
 

7
c aP 220atm 2.2 10 P= ×�   

 
cT 3600K=  

 
M 15g /mol=  
 
r 1.25�  
 

( )
=

Γ γ
�g cR T

c* 2600m / s  

 
γ

=
γ −

�p
R

c 2800 J /Kg /K
1 M

 

 
5

e 3 10 Kg /m / s−µ ×�  
 

= =
γ +

�throat c e
2

T T 3200K T
1

 

 
wT 1000K=  

 
 
We calculate then  
 

e wT T 3200 1000
T 2100K

2 2
+ +

< > = = =  (at the throat) 

 
0.8 0.2w 0.61

eT 3000
1.3

T 2100

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟< > ⎝ ⎠⎝ ⎠

� �  
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and so, using equation (30),  
 
 2

gh 160,000w /m /K�  

 

and  ( )w awt
q 160,000 T 1000−�

 
  1 

( ) γ −⎛ ⎞
= + µ = ×⎜ ⎟

⎝ ⎠
�2

aw tt

1
T T 1 r 1.057 3200 3400K

2
 (slightly less than ) cT

 0.9 
 

8 2
wq 160,000 2400 3.8 10 W /m× = ×�   

 
 
This is a very high level of heat flux. To visualize the implications, suppose this  
had to be transmitted through a thin metal plate (thickness 

wq
δ , thermal conductivity 

k). 
 

                   
 
 
 

One would have w
T

q K
∆

=
δ

 where T∆  is the temperature drop through the metal . 

As an initial guess, suppose the metal were stainless steel ( )K 20 W / m / K� , and 

=1mm. Then  δ
 

 
8 3

wq 3.8 10 10
T 1

K 20

−δ × ×
∆ = = = 9,000K !! 

 
Obviously, this is unacceptable. Try using Copper instead, with K  
(twenty times better). This gives 

400 W / m / K�
T∆ =950K, still not acceptable (copper would be 

very soft then). The plate would have to be thinner and made of copper. Not an easy 
problem. 
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More rationally 
 
The  or  should depend on x, distance from start of nozzle, since the B.L. is still 

developing (not fully developed). In addition, there should be some accounting for  
 

tS gh

• acceleration 
• property variation through B.L. 
• cylindrical geometry 

 
The article by Rubsin and Inonye (ch. 8 in Rosenhow and Hartnett’s Handbook of 
Heat Transfer, McGraw-Hill, 1973) gives a general formula for turbulent B.L. In an 
cylinder, with acceleration: 
 
 

( )t n
1 n ne e eff
c R

e

A
S x

u x
s F −

θ

=
⎛ ⎞
⎜ ⎟µ⎝ ⎠

ρ
F

tc S (and h ug e e p= ρ ) 

 
 

f

h

c 2
s

c
= � 1 found walls. 

 
A
n
⎫
⎬
⎭
= constants, depending on Reynolds no. based on mom. th. 

 

e

e

1
R 4000, A 0.0131, n

7

1
R 4000, A 0.0293, n

5

θ

θ

> =

< =

=

=

 

 

c

R

F

F
θ

⎫⎪
⎬
⎪⎭

= Factors for property variability. Can take several nearly equivalent forms. A    

simple one from Eckert, is 
 
 

( )

( ) ( )

e
c

e
aww

e ew
e e

R

Τ
F

TΤ

e

TTΤ
0.28 0.50 0.22

T T T
T

F w 0.6
ΤΤθ

⎫< >
⎪= =

< > ⎪
< >⎪ = + +⎬

⎪
µ ⎛ ⎞ ⎪= ⎜ ⎟ ⎪< >µ < > ⎝ ⎠ ⎭

� �

ρ
ρ

 

 
 

γ −⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠

2
2e

aw e e e
u 1

T T r T 1 r M
2 2
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r 0.9�  (recovery factor) 
 
The “effective distance”  is related to the actual distance x through an integral 
(accounting for memory of past acceleration) 

effx

 
 

( ) ( )
( )

x

eff
0

f x '
x x dx

f x
= ∫ '  

 

where 
( )

1
n 1 n

e e e

n
1 n

c R

u zR
f  

F F
θ

−

−

µ
=
ρ

 

e

2
aw w e

aw e
t w

h h u
z h h

h h 2

⎛ ⎞−
= =⎜ ⎟⎜ ⎟− ⎝ ⎠

r+

θ

 

 
 
R=R(x)= body radius at x. 
 
For a quick estimate of R , we can simplify further to the flat-plate case, in which  e

 
fcd

dx 2
θ
= ,  

 

with 
( )
( )

1 4
eef

1 6
ee

0.0128 R R 4000c
2 0.0065 R R 4000

θθ

θθ

⎧ <⎪= ⎨
>⎪⎩

 , and with e

ex

dRd
dx dR

θθ
=  

 
 
 

( )
4 5

ee5 4 x1 4
ee xee 1

e ex
7 6ex 6 7e e1 6 x

eexe

0.0128 0.0366R R 40004
R 0.0128RRdR 5 R R 1.99 10

dR 0.0065 6
R 0.0065R

0.0152R R 40007R

θ
θθθ

θ

θθ

⎧ ⎧ <⎧⎪ ⎪=⎪⎪ ⎪ ⎪= → → < ×⎨ ⎨ ⎨
⎪ ⎪ ⎪=
⎪ ⎪ ⎪ >⎩ ⎩⎩

 

 
 
 

or 
0.2
ee x

ex
1 7
ex

0.0366

RR

0.0152R x

R

θ

⎧
⎪
⎪θ

= = ⎨
⎪
⎪
⎩
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For large rockets,  tends to be , so the high  formulas should 

be better, despite the common use of Bartz’s formulae, which are based on the low 
 formulation. Fortunately, differences tend to be small, and are marked often by 

other uncertainties (surface films, fluid properties). 

exthroat
R 710 10−∼ 8

eR

eR

 
Example and Comparisons: 
 

Consider nozzle 
2 22

tt R R RR 1
R x tanx x

4 tan x 2 tan

± −
= + =

α α
 

 
 

with origin at 
2 2

c c
c

R R R
x x

2 tan

− −
= =

α
t  

 

and oc

t

R
1.5, 15

R
= α =  

 

and going through throat at t
t

R
x x

2 tan
= =

α
 

 
Using γ=1.25 and the  option, we find eR 4000

θ
>

 
xt
R 1.875 0.9t 5

eff 12
2 2

t tthroat xc
Rt

x 1.125 0.6979 x
M d

R R1 0.125M 0.6515 0.0464M

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝⎝ ⎠ ⎝ ⎠
∫

⎞
⎟⎟
⎠
 

 

where ( )o

t t to

t

1R x R4tan15 x
R R Rx

tan15
R

= + ⇒
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
 

and ( )
2.252

1
2 t

1 1 0.125M R
M x

1.125 RM

⎛ ⎞+
= ⇒⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 

The integration gives eff

t throat

x
1.0892

R

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 

Compared to t c c

t t

x x x
1.153 and 0.713

R R

⎛ ⎞−
= =⎜ ⎟⎜ ⎟

⎝ ⎠
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Since  appears to the effx 1
7 power, the memory/acceleration effect (up to the 

throat) is insignificant. 
 
 
The throat   is then  tS
 
  (0.9)   ( )awT 3263=

(using r=1, e
w c

T 2
T 1000K , T 3300K, 3300 2933K

t 2.25
= = = = ) 

 
 

( )
( )

t 1throat 0.7717
t c

e throatthroat

0.0131
S

u x x T
T

=
⎛ ⎞− ⎛ ⎞< >
⎜ ⎟ ⎜ ⎟⎜ ⎟µ ⎝ ⎠⎝ ⎠

ρ
 

 
 
 
  (3263) 

e

T 1000 3300
0.28 0.50 0.22

T 2933 2933
< >

= + + =

 
 
Take  7 2

cP 2 10 N /m= × ,
 
 

M= 25 g/mol 
 

g c*
2.25
0.5

8.314
3300R T 0.025c 1592m

2
1.25

2.25

= = =
Γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
 

( ) 2c
*t

P
u 12560 Kg / s /m

c
⇒ = =ρ  

 
 

t c
o

t t

x x1 1.5 1
1.866

R R2 tan15 2 tan

−
= = =

 
and, with R 0 , t .3m=
 

0.6
5

throat
T

6.8 10 6.70
3000
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⎝ ⎠
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One gets, 
 
( )t throat
S 0.00133=  (0.00124 using  instead of tx t cx x− ) 

 
Using the  option (small rockets) eR 4000

θ
<

 
 

( )t 0.68throat 0.2
eff

ethroat throat

0.0293
S

ux T
T

=
⎛ ⎞⎛ ⎞ < >
⎜ ⎟⎜ ⎟µ⎝ ⎠ ⎝ ⎠

ρ
 

 
 
and using again , etc, eff t cx x= − x
 
 
we get ( )t throat

S 0.00102=   (0.000933 using ) tx

 
 
For comparison, the “fully developed pipe flows” formulation would give 
 

N

0.2 0.8 0.2w 0.9*
g 0.2 e t

t e0.2
e p ct

1 at throat

R T A0.026 c
S

u c P T AD

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = µ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ < >⎝ ⎠ ⎝ ⎠⎝ ⎠ρ

 

 
( )t throat
S 0.000958=  

 
This is close to the R 4  results above (and, indeed, the coefficients are for 

). But this appears coincidental

00θ < 0
0R 400θ < , based on the fact that for most nozzles, 

. tx R∆ ∼
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