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Types of models

• Kinetic: based on Boltzmann eq.; unaffordable except for particular 
aspects of the problem

• Fluid: familiar formulation but important difficulties arising from 
1. Weak collisionality (Kn large)
2. Wall interaction 
3. Curved magnetic topology
4. 2D subsonic/supersonic ion flows

• Particle In Cell & MonteCarlo methods (PIC/MCC): good for weak 
collisionality; simple to implement, but subject to ‘numerical effects’; 
important difficulties in dealing with disparate scales of electron and ions. 
MCC model collisions statistically.

• Hybrid (PIC/MCC for heavy species & fluid for electrons): best 
compromise today; allows 2D (geometrical and magnetic) effects; avoids 
small electron scales and admits quasineutrality
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Simulation of the plasma discharge
• 2D, axisymmetric model
• Quasineutral plasma except for sheaths around walls.
• Plasma wall interaction treated in separate sheath models.
• Boundaries: 1) anode + gas injector, 2) cathode surface,  

3) lateral walls
• 3 or 4 species:  neutrals, ions (+, ++), and electrons
• Ion dynamics: unmagnetized, near collisionless,  internal 

regular sonic transitions, singular sonic transitions at 
sheath edges.

• Electrons: magnetized, diffusive motion, and weakly 
collisional (local thermodynamic equilibrium is not 
assured)

• Fluid modelling: complex and uncertain.
• There is no fully 2D model yet. Two existing options:

a) Approximate 1D (axial) fluid  model
b) Near 2D hybrid model: fluid eqs. for electrons; 

particle model for ions & neutrals
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2D fluid model
 Basic hypotheses:  1)  azimuthal symmetry:  0,  0,  0

      2)  Quasineutrality: 2   boundary conditions at sheath edges

      3)  Simplified treatment of pressure tensors 
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2D fluid model

2 2

  Electron (total) energy equation : 
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From 2D to 1D model
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int

1Electron continuity equation:

The 1D axial model works with values averaged over each ('doughnut') radial section 
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1D axial model
 Neglect jet divergence, doubly-charged ions, , ,...
Wall interaction terms appear as source terms (instead of BCs)

Conservation of species flows:         ( ) ( )
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1D axial model

2

1Electron Ohm´s law:       ( )    
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1D axial model
2

2
2

lnFor instance:   
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A singular transition exists at anode sheath edge (point B):
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Anode sheath in a Hall thruster
For Maxwellian-type VDF electron flux to anode  / 2  ,
In normal conditions this is much larger than 

the quasineutral flux in the channel,  ( 0)
A negative anode sheath AB is formed i
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Axial structure
• Acceleration region:

– Presents most of the potential drop & ion 
acceleration 

– For electrons: Joule heating competes 
with wall cooling

– Heat conduction smooths Te profile
– Plasma production = plasma recombination
– Plasma density decreases (due to ion 

acceleration)
• Ionization region:

– Electron cooling due to ionization
– Maximum of plasma density inside

• Ion backstreaming region:
– Electric force very small 
– Ion reverse flow is small
– Pressure drop (towards anode) dominates 

electron diffusive flow
– Length depends on ionization rate (i.e. Te)

• Magnetic field is adjusted for each case:
- solid lines:    110V,  110G
- dashed lines: 600V,  330G
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Axial structure
Influence of anode mass flow Influence of magnetic field shape

External B-field profiles

- Solid lines:      4 mg/s
- Dashed lines: 10 mg/s
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Thrust
2

, ,

 Plasma momentum flow:  ( ) ( ), ( ) ( )  

 Axial momentum equation for the plasma: 
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Thrust

2
0

 Integrating the preceding equation between anode and far downstream:

 Thrust:   

 Magnetic force:    

 Electric  force:   
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 Ion wall impact drag:    ( )

 Jet divergence drag:     

 Therefore, thrust is transmitted to the thruster through the magnetic 
reaction force of elect
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rons on the thruster magnetic circuit.
Notice the contribution of the external magnetic field to thrust.
Pressure forces at the anode make a marginal contribution
Ion energy accommodation at walls act

−
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− s as a drag force. 
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Particle-in-cell (PIC) methods
• Individual motion of macroparticles, subject to electromagnetic forces, is 

followed in a computational grid. (see Birdsall-Langdon) 
• Cell size, lcell, smaller than plasma gradients
• Timestep, ∆τ, such that particles advance less than cell size. 
• Number of macroparticles per cell, Ncell, depends 

on good statistics and small numerical oscillations.
• Mass of macroparticle depends on species density
• Different species different sets of macroparticles
• Example for Hall thruster (only ions and neutrals)

– axisymmetric, 30mm × 15 mm 900 (toroidal) cells lcell~0.5mm
– Ncell (per species) ~ 30    27.000 macroparticles/species

109 -1011 atoms/macroparticle
– macroparticle mass ~ atom mass × (atom/macroparticle)
– ∆τ ~ 10-8 s (ions), 10-7 s (neutrals), 10-10 s (electrons)
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Video of particle motion
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Courtesy of Professor Ahedo, Universidad Carlos III de Madrid. Used with permission.



Video of plasma dynamics

Courtesy of Professor Ahedo, Universidad Carlos III de Madrid. Used with permission.



Time-averaged 2D behavior
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Figure removed due to copyright restrictions. Please see Figure 11 in Escobar, D., A. Ant·n, and E. Ahedo.
"Simulation of High-Specific-Impulse and Double-Stage Hall Thrusters." In Proc. 29th International Electric
Propulsion Conference, Princeton, USA. 2005.



Time-averaged 2D behavior 

B streamlines

Te=const along 
magnetic lines

Ion recombination 
at walls & neutral 

re-emission
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