Electromagnetic Formation Flight Electromagnetic Formation Flight

- • Massachusetts Institute of **Technology**
- \bullet Space Systems Laboratory

NRO DII Final Review

Friday, August 29, 2003

National Reconnaissance Office**Headquarters** Chantilly, VA

- \bullet Lockheed Martin Corporation
- \bullet Advanced Technology Center

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

- •Traditional propulsion uses propellant as a reaction mass
- • Advantages
	- – Ability to move center of mass of spacecraft
		- (Momentum conserved when propellant is included)
	- –Independent (and complete) control of each spacecraft
- •**Disadvantages**
	- –Propellant is a limited resource
	- – Momentum conservation requires that the necessary propellant mass increase exponentially with the velocity increment $(∆V)$
	- Propellant can be a contaminant to precision optics

- Is there an alternative to using propellant?
- Single spacecraft:
	- Yes, If an external field exists to conserve momentum
	- Otherwise, not that we know of…
- • Multiple spacecraft
	- Yes, again if an external field exists
	- OR, if each spacecraft produces a field that the others can react against
	- Problem: Momentum conservation prohibits control of the motion of the center of mass of the cluster, since only internal forces are present

- \bullet Are there missions where the absolute position of the center of mass of a cluster of spacecraft does not require control?
- • Yes! In fact most of the ones we can think of…
	- Image construction
		- u-v filling does not depend on absolute position
	- Earth coverage
		- As with single spacecraft, Gravity moves the mass center of the cluster as a whole, except for perturbations…
	- Disturbance (perturbation) rejection
		- The effort to control perturbations affecting absolute cluster motion (such as J2) is much greater than that for relative motion
		- \bullet Only disturbances affecting the relative positions (such as differential J2) NEED controlling to keep a cluster together
	- Docking
		- •Docking is clearly a relative position enabled maneuver

• Image quality is determined by the point spread function of aperture configuration

$$
I(\psi_i, \psi_j) = \left[\left(\frac{\pi (1 + \cos \theta) D}{\lambda} \right) \left(\frac{J_1 \left(\frac{\pi D \sin \theta}{\lambda} \right)}{\frac{\pi D \sin \theta}{\lambda}} \right) \left| \sum_{n=1}^N \exp \left(-\frac{2\pi i}{\lambda} (\psi_i x_n + \psi_j y_n) \right) \right| \right]^2
$$

Aperture dependence
Geometry dependence

 \bullet The geometry dependence can be expanded into terms which only depend on relative position

$$
I(\psi_i) = I_{Ap}(\psi_i) \left[N + \cos\left(\frac{2\pi}{\lambda}\psi_i(x_1 - x_2)\right) + \cos\left(\frac{2\pi}{\lambda}\psi_i(x_1 - x_3)\right) + \ldots \right]
$$

PSFs for the Golay configurations shown here will not change if the apertures are shifted in any direction

- • What forces must be transmitted between satellites to allow for all relative degrees of freedom to be controlled?
	- In 2-D, *N* spacecraft have 3*N* DOFs, but we are only interested in controlling (and are able to control) 3*N*-2 (no translation of the center of mass)
	- For 2 spacecraft, that's a total of 4:

- \bullet All except case (4) can be generated using axial forces (such as electrostatic monopoles) and torques provided by reaction wheels
- \bullet Complete instantaneous control requires a transverse force, which can be provided using either electrostatic or electromagnetic dipoles

- •Orbit Raising
- Bulk Plane Changes
- \bullet De-Orbit
- All these require rotating the system angular momentum vector or changing the energy of the orbit
- \bullet None of these is possible using only internal forces

- \bullet In the Far Field, the dipole field structure for electrostatic and electromagnetic dipoles are the same
- \bullet The electrostatic analogy is useful in getting a physical feel for how the transverse force is applied
- •Explanation …

- •In the Far Field, Dipoles add as vectors
- \bullet Each vehicle will have 3 orthogonal electromagnetic coils
	- These will act as dipole vector components, and allow the magnetic dipole to be created in any direction
- • Steering the dipoles electronically will decouple them from the spacecraft rotational dynamics
- • A reaction wheel assembly with 3 orthogonal wheels provides counter torques to maintain attitude

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- \bullet **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- Design
	- Calibration
	- Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

• The interaction force between two arbitrary magnetic circuits is given by the Law of Biot and Savart

$$
\vec{F}_2 = \frac{\mu_0}{4\pi} I_1 I_2 \oint_1 \oint \frac{d\vec{l}_2 \times [d\vec{l}_1 \times (\vec{r}_2 - \vec{r}_1)]}{|\vec{r}_2 - \vec{r}_1|^3}
$$

- In general, this is difficult to solve, except for cases of special symmetry
- Instead, at distances far from one of the circuits, the magnetic field can be approximated as a dipole

$$
\vec{B} = \frac{\mu_o}{4\pi} \left[3 \frac{(\vec{\mu}_1 \cdot \vec{r})}{r^5} \vec{r} - \frac{\vec{\mu}_1}{r^3} \right] = \frac{\mu_0}{4\pi} \left(\frac{\mu_1}{r^3} \right) \left[3(\hat{\mu}_1 \cdot \hat{r}) \hat{r} - \hat{\mu}_1 \right]
$$

where its dipole strength μ_1 is given by the product of the total current around the loop (Amp-turns) and the area enclosed

 I_1 ${\rm I}_2$ O

• Just as an idealized electric charge in an external electric field can be assigned a scalar potential, so can an idealized magnetic dipole in a static external magnetic field, by taking the inner product of the two

$$
U=-\vec{\mu}_2\cdot\vec{B}
$$

• Continuing the analogy, the force on the dipole is simply found by taking the negative potential gradient with respect to position coordinates

$$
F = -\nabla_r U = \nabla_r (\vec{\mu}_2 \cdot \vec{B}) = \vec{\mu}_2 \cdot \nabla_r \vec{B}
$$

• In a similar manner, taking the gradient with respect to angle will give the torque experienced by the dipole \rightarrow

$$
T = -\nabla_{\theta} U = \vec{\mu}_2 \times \vec{B}
$$

• Since the Force results from taking a gradient with respect to position, and the Torque does not, the scaling laws for the two are given as

$$
|F| \sim \frac{3}{2\pi} \mu_0 \frac{\mu_1 \mu_2}{s^4} \qquad |T| \sim \frac{3}{4\pi} \mu_0 \frac{\mu_1 \mu_2}{s^3}
$$

• Writing the force in terms of the coil radius (*R*), separation distance (*s*) and total loop current (I_T) , the force scales as

$$
F \sim \frac{3\pi}{2} \mu_0 I_T^2 \bigg(\frac{R}{s}\bigg)^4
$$

- • We see that for a given coil current, the system scales 'photographically', meaning that two systems with the same loop current that are simply scaled versions of one another will have the same force
- • For design, it is of interest to re-write in terms of coil mass and radius, and physical constants:

$$
F \sim \frac{3\pi}{2} \mu_0 \left(\frac{M_C I_C}{2\pi R}\right)^2 \left(\frac{R}{s}\right)^4 = \frac{3}{2} (10^{-7}) \left(\frac{I_C}{\rho}\right)^2 (M_C R_C)^2 \frac{1}{s^4}
$$

•The current state-of-the-art HTS wire has a value of $\left(\frac{I_c}{I} \right) = 14,444 A - m/kg$ ρ $\left(\frac{I_c}{\rho}\right)$ = 14,444 A –

And the product of coil mass and radius becomes the design parameter.

With further simplification:

$$
F \sim 31.2 \ (M_c R_c)^2 \frac{1}{s^4}
$$

The graph to the right shows a family of curves for various products of $M_{\rm C}$ and $R_{\rm C}$

 $\left(\frac{I_c}{2}\right)^2 = 312 \frac{m^3}{\ln 2^2}$ $\frac{3}{2}(10^{7})\left(\frac{I_{C}}{\rho}\right)^{2} = 312 \frac{m^{3}}{kg-s}$

Example:

- 300 kg satellite, 2 m across, needs 10 mN of thrust, want M_C < 30 kg
- EMFF effective up to 40 meters

Far Field/Near Field Comparison Far Field/Near Field Comparison

- • The far field model does not work in the near field
- \bullet (Separation/Distance)>10 to be within 10%
	- Some configurations are more accurate
- \bullet A better model is needed for near-field motion since most mission applications will work in or near the edge of the near field

– For TPF, (s/d) ~ 3 - 6

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

- • Spin-up/spin-down
	- Spin-up from "static" baseline to rotating cluster for u-v plane filling
	- Spin-down to baseline that can be reoriented to a new target axis
- • Electromagnets exert forces/torques on each other
	- Equal and opposite "shearing" forces
	- Torques in the same direction
- \bullet Reaction wheels (RW) are used to counteract EM torques
	- Initial torque caused by perpendicular-dipole orientation
	- Reaction wheels counter-torque to command EM orientation
	- Angular momentum conserved by shearing of the system

S

$$
F_x = \frac{3}{4\pi} \frac{\mu_0 \mu_A \mu_B}{d^4} (2 \cos \alpha \cos \beta - \sin \alpha \sin \beta)
$$

\n
$$
F_y = -\frac{3}{4\pi} \frac{\mu_0 \mu_A \mu_B}{d^4} (\cos \alpha \sin \beta + \sin \alpha \cos \beta)
$$

\n
$$
T_z = -\frac{1}{4\pi} \frac{\mu_0 \mu_A \mu_B}{d^3} (\cos \alpha \sin \beta + 2 \sin \alpha \cos \beta)
$$

\n
$$
F_x = m \frac{a_{centripical}}{d^3} = m \omega^2 r
$$

\n
$$
F_y = m \omega r
$$

\n
$$
\beta = 0
$$

\n<

6 DOF (4 Translational, 2 Rotational)

d

 α $\langle N \rangle$

N

α

- •4 DOF (2 Translational, 2 Rotational)
- 2 Reaction wheels control 2 Rotational **DOF**
- 2 dipole strengths and 2 dipole angles to control 2 translational degrees of freedom (relative motion)
	- 2 extra degrees of freedom.
	- – Allows for many different spin-up configurations
	- Allows for different torque distribution
	- Become more complex with more satellites
	- Must solve non-linear system of equations

DII EMFF Final Review

Torque Analysis Torque Analysis

- • Shear forces are produced when the dipole axes are not aligned.
- • Torques are also produced when the shear forces are produced (Cosv. of angular mom.)
- • The torques on each dipole is not usually equal
	- For the figure to the right

$$
\frac{\tau_A}{\tau_B} = \frac{1}{2}
$$

•Even for pure shear forces, $(F_x=0)$ one can arbitrarily pick one of the dipole angles.

DII EMFF Final Review

Aug. 29, 2003

- •Spin-up of complex formations can be achieved by utilizing magnetic dipoles.
- • There are a number of possible combinations of magnet strengths and dipole configurations to achieve a given maneuver.
- \bullet These different configurations cause different distribution of angular momentum storage.

600 kg s/c, 75m diameter formation, 0.5 rev/hr

100

200

300

400

Steady State Rotations Steady State Rotations

- \bullet Spin-up of formations are not restricted to linear arrays
- \bullet Configurations of any shape can be spun-up
- \bullet Shown here is a SPECS configuration of 3 satellites in an equilateral triangle.

Solving the EOM Solving the EOM

$$
\vec{F}_A = \frac{3\mu_o}{4\pi} \left(-\frac{\vec{\mu}_A \cdot \vec{\mu}_B}{r^5} \vec{r} - \frac{\vec{\mu}_A \cdot \vec{r}}{r^5} \vec{\mu}_B - \frac{\vec{\mu}_B \cdot \vec{r}}{r^5} \vec{\mu}_A + 5 \frac{(\vec{\mu}_A \cdot \vec{r})(\vec{\mu}_B \cdot \vec{r})}{r^7} \vec{r} \right)
$$

- • For a given instantaneous force profile, there are (3N-3) constraints (EOM), and 3N variables (Dipole strengths).
	- This allows us to arbitrarily specify one vehicle's dipole
	- Allows the user the freedom to control other aspects of the formation especially angular momentum distribution
	- For a specific choice of dipole, there are multiple solutions due to the non-linearity of the constraints
- \bullet To determine the required magnetic dipole strengths
	- Pick the magnetic dipole strengths for one vehicle
	- Set the first equation equal to the desired instantaneous force and solve for the remaining magnetic dipole strengths.
	- There will be multiple solutions. Pick the solution that is most favorable

Multiple Solutions Multiple Solutions

DII EMFF Final Review

Aug. 29, 2003

3D Formations 3D Formations

 \bullet We also have the ability to solve for complex 3D motion of satellites.

 \bullet Here is another example of a 3D configuration

- • Choose the free dipole such that a cost function is optimized
	- –Angular momentum distribution
	- –Dipole strength distribution
	- – Currently using Mathematica's global minimization routine
		- Simulated Annealing
		- Genetic algorithms (Differential Evolution)
		- Nelder-Mead
		- Random Search
- • Choose the free dipole based on a specific algorithm
	- –Aligning with the Earth's magnetic field
	- –Favorable angular momentum distribution

- • Being able to control the angular momentum gained by the individual satellites is crucial to the success of EMFF
- \bullet Because the torques and forces generated by EMFF are internal, there is no way to internally remove excess angular momentum from the system
	- Angular momentum can be transferred from one spacecraft to another
- Since EMFF systems do not employ thrusters, other innovative methods must be used to remove the excess angular momentum
	- The formation must interact with its environment
		- Using the Earth's magnetic field
		- Using differential J2 forces

- •Many formation flight missions will operate in LEO.
- • The electromagnets will interact with the Earth's magnetic field producing unwanted forces and torques on the formation
- \bullet The Earth's magnetic field can be approximated by a large bar magnet with a magnetic dipole strength of 8*10²²
- •(EMFF Testbed $\sim 2*10⁴$)

 \bullet The Earth's Magnetic field produces an insignificant disturbance force, but a very significant disturbance torque, due to the scaling of force and torque

- • Ignore the disturbance forces from the Earth's magnetic field on the formation as a whole
	- – This frees up the arbitrary dipole, but disturbance forces are still accounted for.
- \bullet Periodically alternate the magnetic dipole directions, so that the accumulated torques average to zero
- \bullet Turn off all the satellites but one, and use the electromagnets like torque rods to dump the angular momentum
- \bullet Choose the arbitrary dipole wisely so that the total acquired angular momentum on the formation is zero
- \bullet Choose the arbitrary dipole wisely so that you can use the Earth as a dump for angular momentum.

- Use the Earth's dipole to our advantage by transferring angular momentum to the Earth
	- Already done for single spacecraft using torque rods
	- Can be expanded for use with satellite formations
- Strategy:
	- –Pick a satellite to dump momentum
	- –Turn up its dipole strength to maximum
	- –Align the dipole to optimize momentum exchange
	- – Solve the remaining dipoles for the required instantaneous forces
	- – Once the required momentum has been dumped, pick another satellite that needs to dump momentum

- • Satellites are undergoing a specific forcing profile in the presence of the Earth's magnetic field
	- This way the satellites that are not dumping momentum are still being disturbed by the Earth's magnetic field.
- •Each satellite starts off with excess angular momentum
- • The satellite with the most excess momentum is selected for angular momentum dumping
- \bullet The formation is then maintained to have H<100

- • Currently designing a software simulator to test different angular momentum control schemes
- \bullet Built in Mathematica, it has the ability to provide MatLab style outputs
- \bullet It will have the ability to test control algorithms in the presence of the Earth's magnetic field or under the influence of the J2 disturbance force.
- \bullet Currently being used to verify angular momentum dumping algorithms in the presence of the Earth's magnetic field.

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

- • **Motivation:**
	- – Dynamic analyses must be performed to verify the stability and controllability of EMFF systems.
- • **Objective:**
	- Derive the governing equations of motion for an EMFF system:
		- Analyze the relative displacements and rotations of the bodies.
		- Include the gyroscopic stiffening effect of spinning RWs on the vehicles.
	- Linearize the equations, and investigate the stability and controllability of the system.
	- Design a closed-loop linear controller for the system.
	- Perform a closed-loop time-simulation of the system to assess the model dynamics and control performance.
	- Experimentally validate the dynamics and control on a simplified hardware system.

• Two-spacecraft array Each has **three** orthogonal electromagnets • EM pointing toward other spacecraft carries bulk of centripetal load; others assist in disturbance rejection Each has **three** orthogonal reaction wheels, used for system angular momentum storage and as attitude actuators• State vector: *x* = $\vert r \phi \Psi \alpha_1 \alpha_2 \alpha_3 \beta_1 \beta_2 \beta_3 \dot{r} \dot{\phi} \Psi$.
Ψά α_1 α_2 α_3 β_1 β_2 β_3 T = rZ. Yφ ψ eˆreˆφ e $\frac{\psi}{\phi}$ e^x ey eˆzX**Spacecraft A Spacecraft B** rereφ eˆψ **Spacecraft A** ZX $X \sim Y$ **Piece of an imaginary sphere centered at the origin of the** *X, Y, Z* **frame**

•Translational equations of motion for spacecraft A:

$$
\ddot{\vec{r}} = \frac{1}{m} \vec{F}_{A/B} = \frac{1}{m} (\vec{F}_{A1/B1} + \vec{F}_{A1/B2} + \vec{F}_{A2/B1} + \vec{F}_{A2/B2})
$$

•In **e**_{*r*}, **e**_{*ψ*} components:

$$
\vec{r} = \begin{cases}\n\vec{r} - r\vec{v}^2 - r\dot{\phi}^2 \cos^2 \psi \\
2r\dot{\phi}\cos \psi + r\ddot{\phi}\cos \psi - 2r\dot{\phi}\dot{\psi}\sin \psi \\
2r\dot{\psi} + r\ddot{\psi} + r\dot{\phi}^2 \sin \psi \cos \psi\n\end{cases}
$$

•And the forcing terms are of the form:

$$
\frac{\vec{F}_{A1/B1}}{m} = \frac{3\mu_0\mu_A\mu_B}{64\pi m^4} \begin{bmatrix} 3\alpha_1 c\alpha_2 s\beta_1 c\beta_2 - 2c\alpha_1 c\alpha_2 c\beta_1 c\beta_2 + s\alpha_2 s\beta_2\\ c\alpha_2 c\beta_2 (s\alpha_1 c\beta_1 + s\beta_1 c\alpha_1) \\ -c\beta_1 c\beta_2 s\alpha_2 - c\alpha_1 c\alpha_2 s\beta_2 \end{bmatrix}
$$

•Rotational equations of motion for spacecraft A:

$$
\begin{bmatrix}\nI_{rr,s} + I_{rr,w} & 0 & 0 \\
0 & I_{rr,s} + I_{rr,w} & 0 \\
0 & 0 & I_{zz,s}\n\end{bmatrix}\n\begin{bmatrix}\n\ddot{\theta}_{x} \\
\ddot{\theta}_{y} \\
\ddot{\theta}_{z}\n\end{bmatrix} +\n\begin{bmatrix}\n0 & \Omega_{z,w}I_{zz,w} & 0 \\
-\Omega_{z,w}I_{zz,w} & 0 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n\dot{\theta}_{x} \\
\dot{\theta}_{y} \\
\dot{\theta}_{z}\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 0 & 0 \\
0 & \cos_3 s\alpha_3 \\
0 & -s\alpha_3 c\alpha_3\n\end{bmatrix}\n\begin{bmatrix}\n\cos_2 0 & -s\alpha_2 \\
0 & 1 & 0 \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n\cos_1 0 & 0 & 0 \\
-\sin_1 0 & 0 & 0 \\
0 & 0 & 1\n\end{bmatrix}\n\begin{bmatrix}\nT_r \\
T_\phi \\
T_\phi \\
T_\phi\n\end{bmatrix}
$$

$$
\begin{bmatrix}\n\dot{\theta}_{x} \\
\dot{\theta}_{y} \\
\dot{\theta}_{z}\n\end{bmatrix}_{A} = \begin{bmatrix}\n\dot{\alpha}_{3} - \dot{\alpha}_{1} s \alpha_{2} \\
\dot{\alpha}_{2} c \alpha_{3} + \dot{\alpha}_{1} c \alpha_{2} s \alpha_{3} \\
\dot{\alpha}_{1} c \alpha_{2} c \alpha_{3} - \dot{\alpha}_{2} s \alpha_{3}\n\end{bmatrix} \qquad \begin{bmatrix}\n\ddot{\theta}_{x} \\
\ddot{\theta}_{y} \\
\ddot{\theta}_{z}\n\end{bmatrix}_{A} = \begin{bmatrix}\n\ddot{\alpha}_{2} c \alpha_{3} - \dot{\alpha}_{1} s \alpha_{2} - \dot{\alpha}_{1} \dot{\alpha}_{2} c \alpha_{2} \\
\dot{\alpha}_{2} c \alpha_{3} - \dot{\alpha}_{2} \dot{\alpha}_{3} s \alpha_{3} + \dot{\alpha}_{1} c \alpha_{2} s \alpha_{3} - \dot{\alpha}_{1} \dot{\alpha}_{2} s \alpha_{2} s \alpha_{3} + \dot{\alpha}_{1} \dot{\alpha}_{3} c \alpha_{2} c \alpha_{3}\n\end{bmatrix}
$$

$$
\vec{T}_{A/B} = \vec{T}_{A1/B1} + \vec{T}_{A1/B2} + \vec{T}_{A2/B1} + \vec{T}_{A2/B2}
$$

$$
\begin{Bmatrix}\nT_r \\
T_\phi \\
T_\psi \\
T_\psi\n\end{Bmatrix} = \frac{-\mu_0 \mu_A \mu_B}{32\pi r^3} \begin{bmatrix}\n\text{so}_{2} s\beta_1 \text{c} \beta_2 - s\alpha_1 \text{c} \alpha_2 s \beta_2 \\
\text{co}_{1} \text{c} \alpha_2 s \beta_2 + 2s\alpha_2 \text{c} \beta_1 \text{c} \beta_2 \\
\text{co}_{1} \text{c} \alpha_2 s \beta_1 \text{c} \beta_2 + 2s\alpha_1 \text{c} \alpha_2 \text{c} \beta_1 \text{c} \beta_2\n\end{bmatrix}
$$

 \bullet Conservation of Angular Momentum:

$$
I_{zz,w} (\Omega_{z,w} + \dot{\phi}_0) + (I_{zz,s} + mr_0^2) \dot{\phi}_0 = 0
$$

\n
$$
\implies I_{zz,w} \Omega_{z,w} + mr_0^2 \dot{\phi}_0 \approx 0
$$

 \bullet Nominal State Trajectory:

$$
\mathbf{x}_0 = \begin{bmatrix} r_0 & \phi_0 & \Psi_0 & \alpha_{1,0} & \alpha_{2,0} & \alpha_{3,0} & \beta_{1,0} & \beta_{2,0} & \beta_{3,0} & \dot{r}_0 & \dot{\phi}_0 & \dot{\Psi}_0 & \dot{\alpha}_{1,0} & \dot{\alpha}_{2,0} & \dot{\alpha}_{3,0} & \dot{\beta}_{1,0} & \dot{\beta}_{2,0} & \dot{\beta}_{3,0} \end{bmatrix}^T
$$

=
$$
\begin{bmatrix} r_0 & \phi_0(t) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dot{\phi}_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T
$$

Motion in Motion in **X** *-***Y** *Plane: Linearized Plane: Linearized Equations Equations*

EMFF Stability EMFF Stability

Full-state system (*n*=18) has eigenvalues: \bullet $\lambda_{7,8} = \pm \dot{\phi}_0$ $\lambda_{9,10} = \pm i \dot{\phi}_0$ $\lambda_{1,2,3,4,5,6} = 0$ $\frac{r_0 \dot{\Phi}_0}{(I_{rr,s} + I_{rr,w})}$ /*m* $\left(mr_0^2 \right)$ $= \pm i \frac{r_0 \dot{\phi}_0}{(I_{rr,s} + I_{rr,w})} \sqrt{m \left(m r_0^2 + \frac{I_{rr,s} + I_{rr,w}}{3}\right)} \qquad \lambda_{13, 14} = \pm i \frac{r_0 \dot{\phi}_0}{(I_{rr,s} + I_{rr,w})} \sqrt{m (mr_0^2 + \frac{I_{rr,s} + I_{rr,w}}{3}\right)}$ $2 \int_{I}^{2} I_{rr, s} + I_{rr, w}$ $= \pm i \frac{r_0 \Psi_0}{(I_1 + I_2)} \sqrt{m(mr_0^2 + I_{rr, s} + I_{rr, w})}$ $\lambda_{11, 12} = \pm i$ +3 Pole-Zero Map of EMFF System in Question 2 $\lambda_{15, 16} = \pm i r_0 \dot{\phi}_0$ $= \pm i r_0 \dot{\phi}_0 \sqrt{\frac{m}{3I_{zz,s}}}$ $\times \lambda$ 0.1 *m* $\lambda_{17, 18} = \pm i r_0 \dot{\phi}_0$ $= \pm i r_0 \phi_0 \sqrt{\frac{hc}{I_{zz,s}}}$ 0.05 $\times \lambda_{15}$ \mathbf{X} λ_{17} , λ_{11} $\times \lambda_{13}$ — Several poles on the mag Axis $X - \lambda_i - \lambda_k$ imaginary axis and \mathbf{X} λ_{14} one unstable pole X λ_{18} , λ_{12} $X^{\lambda_{16}}$ -0.05 $\lambda_{7,8}$ at +/- array spin-rate — Poles move away from -0.1 $\times \lambda_{10}$ origin as ϕ_0 increases -0.1 -0.05 0.05 0.1 Real Axis

- Current system is in 2nd order form: $M\ddot{\widetilde{x}} + C\dot{\widetilde{x}} + K\widetilde{x} = Fu$ $\widetilde{\;\;}\;$ ۰ $\widetilde{}$ ٠ $\tilde{}$
- Place in 1st order form:

$$
\dot{x} = Ax + Bu \qquad x = \begin{bmatrix} \tilde{x} & \dot{\tilde{x}} \end{bmatrix}^T
$$

$$
A = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}C \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ M^{-1}F \end{bmatrix}
$$

• Form controllability matrix:

$$
C = [B \ AB \ A^2B \ \dots \ A^{n-1}B]
$$

• System is fully controllable because *C* has full rank r **ank** $(C) = 18 = n$ *n* : number of states

- $\dot{x} = Ax + Bu$ c From state-space equation of motion: *x* ۰
- $\int\limits_0^\infty \left[{\bf x}\,^T\,R_{_{XX}}\,{\bf x}\,+\,{\bf u}\,^T\,R_{_{uu}}\,{\bf u}\,\right]$ $J = \int \int \mathbf{x}^T R_{xx} \mathbf{x} + \mathbf{u}^T R_{uu} \mathbf{u} \, dt$ Form the LQR cost function: \bullet $=$ \parallel X K_{\perp} X $+$ 0

 R_{xx} : state penalty matrix R_{uu} : control penalty matrix

Choose relative state and control penalties:

- $\Delta r:10 \qquad \Delta \dot{r}:5 \qquad \Delta \phi:10^{-15} \qquad \Delta \dot{\phi}:3 \qquad \Delta \psi:1 \qquad \Delta \dot{\psi}:1$ ϕ : 3 Δ ψ : 1 Δ $\dot{\psi}$
- All Euler angles and their derivatives : 1
- All electromagnets, all reaction wheels : 1
- The cost, *J*, is minimized when: $0 = R_{xx} + PA + A^T P - PBR_{uu}^{-1}B^T P$ \longrightarrow $\mathbf{u} = -R_{uu}^{-1}B^T P \mathbf{x} = -K \mathbf{x}$ **Algebraic Algebraic Ricatti Ricatti Equation (A.R.E.) Equation (A.R.E.)** $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} = [A - BK] \mathbf{x} = A_{CL}\mathbf{x}$

- Closed-loop time simulations were performed of both the O nonlinear and linearized equations of motion
	- Both employ the same linear feedback controller
- "Free vibration" response was investigated \bullet
	- Initial condition : deviation from nominal state of one or more degrees of freedom (∆*^r* in the results shown here)
	- Closed-loop response to perturbed initial condition is simulated
	- Perhaps offers more insight than simulating response to random disturbances
- Results demonstrate: \bullet
	- the range in which the *linearized equations* are valid
	- the range in which *linear control* is sufficient
	- the importance of the relative control penalties chosen for the various degrees of freedom

- Initial conditions: 0.001% deviation o from nominal array radius
	- Simulations of nonlinear and linearized equations are identical, except for small numerical error in angles Δ ψ, Δ α₂, Δ α₃, Δ β₂, Δ β₃
		- Both use linear controller

- Initial conditions: 1% deviation from nominal array radius
	- Nonlinear and linear simulations diverge
	- System remains stable in both simulations

Simulation of EMFF Dynamics Results *(II)*

- Initial conditions: 3% deviation ۰ from nominal array radius
	- Radial separation remains stable
	- Elevation angle of array may go unstable (probably numerical error).
	- Check by increasing relative penalty on ∆ψ and redesigning controller.

- Initial conditions: 4% deviation ۰ from nominal array radius
	- Divergence of radial separation shows linear control not sufficient in this case.
		- Redesign with greater penalty on ∆r? ×
		- Investigate nonlinear control techniques? ×
	- Linear simulation does not capture divergence of dynamics.

- •1-D simplification of linearized 3-D dynamics
- \bullet Constant spin rate for data collection
- \bullet Relative radial position maintenance: disturbance rejection

Perturbed Dynamics of Steady Perturbed Dynamics of Steady-State Spin

Perturbation Analysis: Perturbation Analysis:

$$
\ddot{x}_0 + \delta \ddot{x} = \Omega^2 \left(x_0 + \delta x \right) - \frac{c \left(\mu_{avg} + \delta \mu \right)^2}{16m(x_0 + \delta x)^4}
$$

 $\,_{0}$

. .

$$
\mu_{avg}^2 = \frac{16m\Omega^2 x_0^5}{c}
$$

 x_{0} μ_{avg} **Steady-State Control Perturbation Equation**

 $\frac{\delta \ddot{x}}{2}$ – $\Omega^2 \frac{\delta x}{2}$ = –2 $\Omega^2 \frac{\delta \mu}{2}$

 x_0

$$
\begin{bmatrix}\n\frac{\partial \dot{x}}{x_0} \\
\frac{\partial \ddot{x}}{x_0}\n\end{bmatrix} = \begin{bmatrix}\n0 & 1 \\
\Omega^2 & 0\n\end{bmatrix} \begin{bmatrix}\n\frac{\partial x}{x_0} \\
\frac{\partial \dot{x}}{x_0}\n\end{bmatrix} + \begin{bmatrix}\n0 \\
-2\Omega^2\n\end{bmatrix} \frac{\partial \mu}{\mu_{avg}} \longrightarrow
$$

 $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$ **system analysis**

 $x = x_0 + \delta x$, $\mu = \mu_{avg} + \delta \mu$

- Use binomial formula \bullet to expand terms
- Neglect H.O.T. ۰
- Solve for S.S. Control when $\ddot{x} = 0$

 $s_{12} = \pm \Omega$ **Unstable dynamics: Unstable dynamics:**

*** Same as** $\lambda_{7,8}$ **in 3-D EMFF** system analysis

Linear Control Design Linear Control Design

- • Follow same control design process as for full-state, 3-D system:
- •Select state and control penalties:

• Solve the A.R.E. analytically by enforcing that P must be positive semidefinite:

• The displacement and velocity **feedback gains** are then:

$$
K = R_{uu}^{-1} B^T P = \frac{2\Omega^2}{\rho} \begin{bmatrix} P_{12} & P_{22} \end{bmatrix}
$$

$$
R_{xx} = \begin{bmatrix} \lambda & 0 \\ 0 & 0 \end{bmatrix} \qquad R_{uu} = \rho
$$

 $\int\limits_0^\infty \left[{\bf x}\,^T\,R_{_{XX}}\,{\bf x}\,+\,{\bf u}\,^T\,R_{_{uu}}\,{\bf u}\,\right]$

 $\mathbf{u} = -R_{uu}^{-1}B^TP\mathbf{x} = -K\mathbf{x}$

 $J = \int \int \mathbf{x}^T R_{xx} \mathbf{x} + \mathbf{u}^T R_{uu} \mathbf{u} \, dt$

 $=$ \parallel \mathbf{X} \parallel \mathbf{X} \parallel \mathbf{X} \perp

 $\boldsymbol{0}$

$$
P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \geq 0
$$

 \bullet Now solve for the closed-loop dynamic matrix, where:

$$
\mathbf{u} = -K\mathbf{x} \longrightarrow \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u} = [A - BK]\mathbf{x} = A_{CL}\mathbf{x}
$$

λ• Evaluate as $\stackrel{\sim}{\smile}$ increases from 0 \rightarrow $\tilde{-}$ increases from 0 $\rightarrow \infty$ ρ $\zeta = 0.707$ Imag. Increasing $\frac{\lambda}{\rho}$ • The closed-loop poles for the most efficient controller Real $-\Omega$ Increasing $\frac{\lambda}{0}$ lie along this curve.

Experimental Validation: 1-D Airtrack

- • Nearly frictionless 1-dimensional airtrack• Can be set up in a **stable** or **unstable** configuration, depending on the tilt angle **Free magnet on "slider"Fixed electromagnet**
- • Unstable mode has dynamics nearly identical to a 1-DOF steady-state spinning cluster!

Ultrasound displacement sensor

 Closing the loop on the unstable configuration will demonstrate an ability to control systems such as the steady-state spinning cluster.

- Similar linearization, state-space \bullet analysis, and **LQR control design** to steady-state spin system
- Open-loop step response ۰
	- Very light damping means poles are nearly on the imaginary axis, as expected
- Closed-loop step response has reduced ۰ overshoot and increased damping

Step Response: LQR Control of Stable Airtrack System

Real Axis

−1.5 −1 −0.5 0 0.5 1 1.5 2

−2−
−2

Experimental Results: Unstable Experimental Results: Unstable Airtrack Airtrack

- Similar dynamics and **control design control design** to \bullet steady-state spin and stable-airtrack
- Open-loop response is divergent ۰
- Closed-loop response is stable! \bullet
- Stabilizing this system means we should \bullet be able to perform steady-state control and disturbance rejection for a spinning cluster!

LQR Control of Unstable Airtrack System 1Closed Loop Open Loop 0.9Open Loop Separation Distance [meters] Separation Distance [meters] 0.8 0.70.6 0.5 0.4 0.3 $0.2\frac{1}{0}$ 10 20 30 40 50 60 Time [seconds]

Real Axis

−1.5 −1 −0.5 0 0.5 1 1.5 2

Video: Control of Unstable Airtrack

- Open-loop response is divergent.
	- Constant current is applied to EM
	- Magnets diverge from steady-state separation distance
		- Fall apart if disturbed one way
		- ***** Come together if disturbed the other way
- Closed-loop response is stable! \bullet
	- $-$ Oscillates at about ~0.2 Hz
	- Maximum displacement from steady-state location is ~1 cm
	- Performance limitations due to model uncertainty and amplifier saturation

- • Modeled the dynamics of a two-vehicle EMFF cluster
	- –Nonlinear, unstable dynamics
	- –Linearized dynamics about a nominal trajectory (steady-state spin)
	- **Stability: Stability:3-D system has six poles at the origin, ten poles along the imaginary axis, and a stable/unstable pair of poles at the array spin-rate**
	- **Controllability: Controllability: System is fully controllable with 3 electromagnets and 3 reaction wheels per vehicle**
- • Simulated two-vehicle EMFF closed-loop dynamics
	- –Demonstrated stabilization of unstable nonlinear dynamics using linear control
	- – We can investigate for future systems:
		- \bullet whether linear control is sufficient for a given configuration
		- \bullet what the "allowable" disturbances are from the nominal state
		- \bullet how the relative state and control penalties may improve the closed-loop behavior
- • Validated EMFF dynamics and closed-loop control on simplified hardware system
	- –Airtrack: stable and unstable configurations (1-DOF)
	- – Demonstrated stabilization of an unstable system with dynamics similar to an EMFF array undergoing steady-state-spin

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

EMFF Applications in 10 EMFF Applications in 10-20 Years 20 Years

Docking

EMFF Applications in 30 EMFF Applications in 30-40 Years 40 Years

Reconfigurable Arrays & Staged Deployment

Protective magnetosphere

Reconfigurable Artificial Gravity Space Station

Additional Mission Applications Additional Mission Applications

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

'Stationary' Orbits Stationary' Orbits

•

- • For telescopes and other observation missions with an extended look time, holding an fixed observation angle is important
- • Satellite formations in Earth's orbit have an intrinsic rotation rate of 1 rev/orbit
- \bullet EMFF can be used to stop this rotation and provide a steady Earth relative angle.
- •Using Hill's equations…

 $\ddot{x} = 3n^2x + 2n\dot{y} + a_x$

- Unless the required force vector aligns with the position vector, torques are produced
	- Zero torque solutions are
		- Holding a satellite in the nadir direction
		- Holding a satellite in the cross-track direction
- • For other pointing angles, torques will be produced
- • Any angular momentum buildup can be removed by:
	- Moving to an opposite position.
	- –Interacting with the Earth's magnetic field

$$
\ddot{y} = -2n\dot{x} + a_y
$$
\n
$$
\ddot{z} = -n^2 z + a_z
$$
\n
$$
\vec{f} = -3xmn^2 \hat{x} + zmn^2 \hat{z}
$$
\n
$$
\vec{\tau} = \vec{x} \times \vec{f} \qquad \vec{\tau} = m n^2 \begin{pmatrix} y & z \\ -4x & z \\ 3x & y \end{pmatrix}
$$

•Normalized Mission Efficiency

- Comparing J_3/J_2 , then J_4/J_3 , J_5/J_4 , J_6/J_5 , etc.
- Diminishing returns of adding S/C

•Identical or Mother-Daughter Configuration

•Define Mass Fractions:

 M $_{inner} = \gamma \, M$ $_{total}$ *array* $M_{\mathit{outer}} = \frac{\gamma-1}{2} M_{\mathit{total}_{array}}$ $1.4 \frac{x 10^{-3}}{1}$ Optimal Electromagnetic Mass Distribution Mem=100kg $Mem = 200_ka$ Mem=300kg Mem=400kg 1.2 Rotation Rate w [r/s]

co

co

co 0.4 0.2 $0₀$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **Total Mass Fraction for Center Spacecraft**

•Identical Configuration is non-optimal

Center Spacecraft experiences no translation \rightarrow no mass penalty \rightarrow suggests larger center spacecraft

•Higher rotation rate for mother-daughter configuration for fixed masses

- • Compare total system mass for various propulsion options with EM option for the TPF mission (4 collector and 1 combiner spacecraft)
- • Array is to rotate at a fixed rotation rate (ω = 1 rev/2 hours)
- • All collector spacecraft have same EM core and coil design
- •All spacecraft have the same core
- •Force balancing equations:

$$
F_{cent_1} = F_{M_{12}} + F_{M_{13}} + F_{M_{14}} + F_{M_{15}}
$$

$$
F_{cent_2} = -F_{M_{21}} + F_{M_{23}} + F_{M_{24}} + F_{M_{25}}
$$

 $m_{_{SC}} = m_{_{dry}} + m_{_{sa}} + m_{_{core}} + m_{_{coil}}$ EM mass components Superconducting wire (m_{sc}) Density $(\rho_{\rm st})$ 13608 kg m⁻³ Copper coil (m_{coil}) Density (ρ_{Cu}) 8950 kg m⁻³ Resistivity (ρ) $1.7x10^{-8}$ Ω m Solar Array (m_{sa}) Power to mass conv (P_{conv}) 25 W kg⁻¹ TPF spacecraft^{*} (*m_{dry})*
Collector Spacecraft Dry 600 kg, 268 W Propulsion 96 kg, 300 W Propellant 35 kg Combiner Spacecraft Dry 568 kg, 687 W Propulsion 96 kg, 300 W Propellant 23 kg

**Source: TPF Book (JPL 99-3)*

Case Study: Sparse aperture (TPF Case Study: Sparse aperture (TPF-2)

- •**Cold Gas -** Low I_{sp}, high propellant requirements
	- Not viable option
- •*PPTs* and Colloids - Higher I_{sp}
	- still significant propellant over mission lifetime
- • *FEEPs –* Best for 5 yr mission lifetime
	- Must consider contamination issue
	- Only 15 kg mass savings over EMFF @ 5 yr mark

- •• *EM coil* (R = 4 m) (M_{tot} = 3971 kg)
	- Less ideal option when compared to FEEPs even for long mission lifetime
- •• *EM Super Conducting Coil* (R = 2 m) (M_{tot} = 3050 kg)
	- Best mass option for missions > 6.8 years
	- No additional mass to increase mission lifetime
	- Additional mass may be necessary for CG offset
		- •Estimated as ~80 kg

EMFF Testbed EMFF Testbed

Lockheed Martin Corporation Corporation

Advanced Technology Center

Massachusetts Institute of

Space Systems Laboratory Laboratory Systems Laboratory

Technology

- • Goal: Demonstrate the feasibility of electromagnetic control for formation flying satellites
- • Design and build a testbed to demonstrate 2-D formation flight with EM control
	- Proof of concept
	- Traceable to 3-D
	- Validate enabling technologies
		- High temperature superconducting wire

Metrology and Comm **Gas supply** tank Magnet and cryogenic containment **Electronics** boards Batteries Base and gas carriage **Reaction** wheel

From Design to Reality From Design to Reality

- • Functional Requirements:
	- System will contain 2 vehicles
	- Robust electromagnetic control will replace thrusters
	- Each vehicle will be:
		- Self-contained (no umbilicals)
		- Identical/interchangeable
- • Vehicle Characteristics
	- Each with 19 kg mass, 2 electromagnets, 1 reaction wheel
- • Communication and processing
	- 2 internal microprocessors (metrology, avionics/control)
	- Inter-vehicle communication via RF channel
	- External "ground station" computer (operations, records)
- • Metrology per vehicle
	- 1 rate gyro to supply angular rate about vertical axis
	- 3 ultrasonic (US) receivers synchronized using infrared (IR) pulses

Electromagnet Design Electromagnet Design

- • American Superconductor Bi-2223 Reinforced High Temperature Superconductor Wire
	- **Dimensions**
		- 4.1 mm wide
		- 0.3 mm thick
		- 85 m length pieces
	- \equiv Critical Current
		- 115 amps, 9.2 kA/cm2
			- Below 110 K

- • Coil wrapped with alternating layers of wire and Kapton insulation
	- –100 wraps
	- Radii of 0.375m and 0.345m
- • Toroid-shaped casing: Insulation & Structural component
	- Operable temperature at 77 K
	- Surround by liquid nitrogen

Containment System Design Containment System Design

- • Requirements:
	- Keep the wire immersed in liquid nitrogen.
	- – Insulate from the environment the wire and the liquid N_2 .
		- Non-conductive material.
	- $\,$ Stiff enough to support liquid N_2 container and its own weight.
- • Material: Foam with fiber glass wrapped around it.

Power Subsystem Power Subsystem

- • Coil & Reaction Wheel Power:
	- Rechargeable NiMH D-cell batteries
	- MOSFET controller uses H-bridge circuit to control current through gates
	- 20 minute power duration

Air Carriage and Reaction Wheel

- • 2-D Friction-less environment provided by gas carriage
	- allows demonstration of shear forces, in concert with reaction wheel
	- Porous Membrane, Flat air bearings provide pressurized cushion of gas
	- CO_2 gas supply: rechargeable compressed gas tank, 20 minute duration

- •Reaction Wheel
- • Store angular momentum
	- Provide counter-torques to electromagnets
	- –Provide angular control authority
	- 0.1 Nm Torque at 10 Amps
- • Flywheel Requirements:
	- $\,$ non-metallic \rightarrow Urethane Fly Wheel
	- Maximum wheel velocity at 7000 RPM
- •Motor tested in EM field with no variation in performance

Model Calibration Model Calibration

DII EMFF Final Review

- •Initially we had problems demonstrating shear forces
- •The reaction wheel is designed for small shear forces
- • Vehicle tends to 'stick' to table, so larger forces are needed to move the vehicle
- •Larger shear forces produce larger torques
- •The torque generated would cause the vehicle to rotate
- •As the vehicle rotated, the dipoles aligned causing the vehicles to attract
- •Used Vehicle's ability to steer the dipole to compensate

Attraction

Without Reaction Wheel

- • Control Testing
	- a. One vehicle fixed disturbance rejection
	- b. One vehicle fixed slewing, trajectory following
	- c. Both vehicles free disturbance rejection
	- d. Both vehicles free slewing, trajectory following
	- e. Spin-up

•**Vehicle Design**

- Containment system redesign: Plastic or copper tubing
- – Reaction Wheel
	- •Motor is too weak to counteract high torque levels
	- \bullet Reaction wheel is also possibly undersized
- •**Three vehicle Control Testing**

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

- • Significant research concerning maintaining cryogenic temperatures in space
	- Space Telescope Instrumentation
	- Cryogenic propellant storage
- • Spacecraft out of Earth orbit can use a sunshield that is always sun-pointing to reflect radiant energy away
- \bullet For Earth orbit operation, this won't work, since even Earth albedo will heat the 'cold' side of the spacecraft
- • A cryogenic containment system, similar in concept to that used for the EMFF testbed must be implemented, using a combination of a reflective outer coating, good insulation, and a cyo-cooler to extract heat from the coil
- • Using a working fluid to carry heat around to the cry-cooler will be explored, or possibly using the wire itself as the thermal conductor

DII EMFF Final Review

Efficient High Current Supplies Efficient High Current Supplies

- • The existing controller for the testbed was based on a pulse width modulated controller found for use with radio controlled cars and planes
- • An H-bridge is used to alternate applied potential to the coil, with the next current delivered dependent on the amount of time the voltage is applied in a given direction
- • The drawback is that current is always flowing through the batteries, which both provide a power sink as well as dissipate heat
- • One solution may be to incorporate very high Farad capacitor instead of a batter, to reduce the internal resistance
- • Alternatively, a method of 'side-stepping' the storage device altogether may be employed, allowing the current to free-wheel during periods of low fluctuation

- • NASA reports, Lockheed Martin reports, other contractors (when available), IEEE journal articles
- •Nothing for very high fields (0.1 T and above)
- •Effects of earth's magnetic field (0.3 gauss or so)
- • Effects of on-board field sources such as
	- Magnetic latching relays
	- Traveling wave tubes
	- Tape recorders
	- Coaxial switches
	- **Transformers**
	- Solenoid valves
	- **Motors**

- \bullet All these fields are much smaller than what is being projected for magnetic steering coils
- • Equipment traditionally known to be susceptible to magnetic effects:
	- Magnetometers
	- Photomultipliers
	- Image-dissector tubes
	- Magnetic memories
	- Low-energy particle detectors
	- Tape recorders
- • Digicon detectors in Hubble FOS were found to be vulnerable to magnetic effects
- \bullet Quartz-crystal oscillators ditto (AC fields)

- \bullet Other effects may come into play that are negligible at low field strengths
	- Eddy currents in metal harnesses
	- Hall effects in conductors
	- Effects in semiconductors?
- •Most EMI requirements hard to meet
- \bullet Shielding requirement translates into a mass penalty
- \bullet Pursuing more literature results, but this is effectively a new regime – may require testing

•Attenuation of a DC magnetic field resulting from an enclosure scales approximately as

$$
A = \frac{\mu}{2} \frac{\Delta}{R}
$$

- •Where μ is the permeability, Δ is the thickness of the material, and R is the characteristic radius of enclosure
- •Some high permeability materials:

- • Reducing a 600 G (0.06 T) field to ambient (0.3 G) requires an attenuation of 2x10³, or a minimum Δ /R of 0.01
- •This is .1 mm thickness for each 10 cm of radius enclosed

- •**Geometry**
	- Shielding acts to divert field lines around components
	- Gentle radii are better for re-directing field lines than sharp corners
- • Size
	- Smaller radii are more effective, so shielding should envelop the component to be protected as closely as possible
- •**Continuity**
	- Separate pieces should be effectively connected either mechanically or by welding to insure low reluctance
- •**Closure**
	- Components should be completely enclosed, even if by a rectangular box to shield all axes
- •**Openings**
	- As a rule, fields can extend through a hole ~5x the diameter of the hole
- • Nested Shields
	- In high field areas, multiple shield layers with air gaps can be used very effectively. Lower permeability, higher saturation materials should be used closer to the high field regions

• In addition to high permeability materials, shielding can be achieved locally using Helmholtz coils

- \bullet An external field can be nullified with an arrangement of coils close to the region of interest
- • The small coil size requires proportionally smaller amp-turns to achieve nulling of the field
	- Will not significantly affect the main field externally

- •**Motivation**
- \bullet **Fundamental Principles**
	- Governing Equations
	- Trajectory Mechanics
	- Stability and Control
- • **Mission Applicability**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **Mission Analyses**
	- Sparse Arrays
	- Filled Apertures
	- Other Proximity Operations
- • **MIT EMFFORCE Testbed**
	- –Design
	- Calibration
	- –Movie
- • **Space Hardware Design Issues**
	- Thermal Control
	- Power System Design
	- High B-Field Effects
- •**Conclusions**

- • There are many types of missions that can benefit from propellantless relative control between satellites
	- Provides longer lifetime (even for aggressive maneuvers)
	- Reduces contamination and degradation
- • Angular momentum management is an important issue, and methods are being developed to de-saturate the reaction wheels without using thrusters
- • Preliminary experimental results indicate that we are able to perform disturbance rejection in steady state spin dynamics for multiple satellites
- • Optimal system sizing has been determined for relatively small satellite arrays. Currently larger formations are being investigated
- \bullet Although low frequency magnetic interference data is difficult to find, shielding against the relatively low fields inside the coils appears to be possible
- • Preliminary validation with the MIT Testbed has been achieved, and more complex maneuver profiles will be accomplished with future upgrades