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MotivationMotivation

• Traditional propulsion uses propellant as a reaction mass

• Advantages
– Ability to move center of mass of spacecraft

(Momentum conserved when propellant is included)
– Independent (and complete) control of each spacecraft

• Disadvantages
– Propellant is a limited resource
– Momentum conservation requires that the necessary propellant 

mass increase exponentially with the velocity increment (∆V)
– Propellant can be a contaminant to precision optics
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Question I:Question I:

• Is there an alternative to using propellant?

• Single spacecraft:  
– Yes, If an external field exists to conserve momentum
– Otherwise, not that we know of…

• Multiple spacecraft
– Yes, again if an external field exists
– OR, if each spacecraft produces a field that the others can 

react against
– Problem: Momentum conservation prohibits control of the 

motion of the center of mass of the cluster, since only 
internal forces are present
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Question II:Question II:

• Are there missions where the absolute position of the center of mass of 
a cluster of spacecraft does not require control?

• Yes!  In fact most of the ones we can think of…
– Image construction

• u-v filling does not depend on absolute position
– Earth coverage

• As with single spacecraft, Gravity moves the mass center of the 
cluster as a whole, except for perturbations…

– Disturbance (perturbation) rejection
• The effort to control perturbations affecting absolute cluster 

motion (such as J2) is much greater than that for relative motion
• Only disturbances affecting the relative positions (such as 

differential J2) NEED controlling to keep a cluster together
– Docking

• Docking is clearly a relative position enabled maneuver



DII EMFF Final Review Aug. 29, 2003

Example: Image ConstructionExample: Image Construction

• Image quality is determined by the point spread function of aperture 
configuration
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• The geometry dependence can be expanded into terms which only depend on 
relative position
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Comparison Comparison -- GolayGolay ConfigurationsConfigurations

PSFs for the Golay configurations shown here will not change if 
the apertures are shifted in any direction
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Question III:Question III:

• What forces must be transmitted between satellites to allow for all relative 
degrees of freedom to be controlled?

– In 2-D, N spacecraft have 3N DOFs, but we are only interested in 
controlling (and are able to control) 3N-2 (no translation of the center of 
mass)

– For 2 spacecraft, that’s a total of 4:

• All except case (4) can be generated using axial forces (such as electrostatic 
monopoles) and torques provided by reaction wheels

• Complete instantaneous control requires a transverse force, which can be 
provided using either electrostatic or electromagnetic dipoles

1 2 3 4



DII EMFF Final Review Aug. 29, 2003

What is it NOT good for?What is it NOT good for?

• Orbit Raising
• Bulk Plane Changes
• De-Orbit

• All these require rotating the system angular 
momentum vector or changing the energy of the orbit

• None of these is possible using only internal forces
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Forces and Torques: ConceptualForces and Torques: Conceptual
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• In the Far Field, the dipole field structure for electrostatic and 
electromagnetic dipoles are the same

• The electrostatic analogy is useful in getting a physical feel for 
how the transverse force is applied

• Explanation …
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EMFF Vehicle Conceptual ModelEMFF Vehicle Conceptual Model

• In the Far Field, Dipoles add as vectors

• Each vehicle will have 3 orthogonal 
electromagnetic coils
– These will act as dipole vector 

components, and allow the magnetic 
dipole to be created in any direction

• Steering the dipoles electronically will 
decouple them from the spacecraft 
rotational dynamics

• A reaction wheel assembly with 3 
orthogonal wheels provides counter 
torques to maintain attitude
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Magnetic Dipole ApproximationMagnetic Dipole Approximation

• The interaction force between two arbitrary magnetic circuits is given by the 
Law of Biot and Savart

I1
I2

O

• In general, this is difficult to solve, except for cases 
of special symmetry

• Instead, at distances far from one of the circuits, the 
magnetic field can be approximated as a dipole
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where its dipole strength µ1 is given by the product of the total current around 
the loop (Amp-turns) and the area enclosed
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DipoleDipole--Dipole InteractionDipole Interaction

• Just as an idealized electric charge in an external electric field can be assigned 
a scalar potential, so can an idealized magnetic dipole in a static external 
magnetic field, by taking the inner product of the two

• Continuing the analogy, the force on the dipole is simply found by taking the 
negative potential gradient with respect to position coordinates

• In a similar manner, taking the gradient with respect to angle will give the torque 
experienced by the dipole

• Since the Force results from taking a gradient with respect to position, and the 
Torque does not, the scaling laws for the two are given as
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How Far Apart Will They Work?How Far Apart Will They Work?

• Writing the force in terms of the coil radius (R), separation distance (s) and 
total loop current (IT), the force scales as

• We see that for a given coil current, the system scales ‘photographically’, 
meaning that two systems with the same loop current that are simply scaled 
versions of one another will have the same force

• For design, it is of interest to re-write in terms of coil mass and radius, and 
physical constants:

• The current state-of-the-art HTS wire has a value of 

And the product of coil mass and radius becomes the design parameter.
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More of ‘How Far apart will they work’?More of ‘How Far apart will they work’?

Force vs. Separation Distance
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With further simplification:
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Example:
• 300 kg satellite, 2 m across, needs 

10 mN of thrust, want MC < 30 kg
• EMFF effective up to 40 meters
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Far Field/Near Field ComparisonFar Field/Near Field Comparison

• The far field model does not work in the 
near field

• (Separation/Distance)>10 to be within 10%
– Some configurations are more accurate

• A better model is needed for near-field 
motion since most mission applications will 
work in or near the edge of the near field
– For TPF,  (s/d) ~ 3 - 6
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22--D Dynamics of SpinD Dynamics of Spin--UpUp

• Spin-up/spin-down
– Spin-up from “static” baseline to rotating cluster for u-v plane filling
– Spin-down to baseline that can be reoriented to a new target axis

• Electromagnets exert forces/torques on each other
– Equal and opposite “shearing” forces
– Torques in the same direction

• Reaction wheels (RW) are used to counteract EM torques
– Initial torque caused by perpendicular-dipole orientation
– Reaction wheels counter-torque to command EM orientation
– Angular momentum conserved by shearing of the system

EM Torque RW TorqueN

S

S N
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22--Satellite SpinSatellite Spin--upup
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• 6 DOF (4 Translational, 2 Rotational)
• 4 DOF (2 Translational, 2 Rotational)
• 2 Reaction wheels control 2 Rotational 

DOF
• 2 dipole strengths and 2 dipole angles 

to control 2 translational degrees of 
freedom (relative motion)

– 2 extra degrees of freedom. 
– Allows for many different spin-up 

configurations
– Allows for different torque 

distribution
– Become more complex with more 

satellites
– Must solve non-linear system of 

equations
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Torque AnalysisTorque Analysis
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• Shear forces are produced when the dipole axes 
are not aligned.

• Torques are also produced when the shear 
forces are produced (Cosv. of angular mom.)

• The torques on each dipole is not usually equal
– For the figure to the right

• Even for pure shear forces,  (Fx= 0) one can 
arbitrarily pick one of the dipole angles.
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Satellite Formation SpinSatellite Formation Spin--UpUp

• Spin-up of complex formations can be achieved by utilizing magnetic dipoles.
• There are a number of possible combinations of magnet strengths and dipole 

configurations to achieve a given maneuver. 
• These different configurations cause different distribution of angular 

momentum storage.
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Steady State RotationsSteady State Rotations

• Spin-up of formations 
are not restricted to 
linear arrays

• Configurations of any 
shape can be spun-up

• Shown here is a SPECS 
configuration of 3 
satellites in an 
equilateral triangle.

Initial position
Steady state position
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Solving the EOMSolving the EOM

• For a given instantaneous force profile, there are (3N-3) constraints (EOM), 
and 3N variables (Dipole strengths).
– This allows us to arbitrarily specify one vehicle’s dipole
– Allows the user the freedom to control other aspects of the formation 

especially angular momentum distribution
– For a specific choice of dipole, there are multiple solutions due to the 

non-linearity of the constraints

• To determine the required magnetic dipole strengths
– Pick the magnetic dipole strengths for one vehicle
– Set the first equation equal to the desired instantaneous force and solve 

for the remaining magnetic dipole strengths.
– There will be multiple solutions. Pick the solution that is most favorable
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Multiple SolutionsMultiple Solutions
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3D Formations3D Formations

• We also have the ability 
to solve for complex 3D 
motion of satellites.
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3D Formations3D Formations

• Here is another example of a 3D configuration



DII EMFF Final Review Aug. 29, 2003

Choosing the Free DipoleChoosing the Free Dipole

• Choose the free dipole such that a cost function is optimized
– Angular momentum distribution
– Dipole strength distribution
– Currently using Mathematica’s global minimization routine

• Simulated Annealing
• Genetic algorithms (Differential Evolution)
• Nelder-Mead
• Random Search

• Choose the free dipole based on a specific algorithm
– Aligning with the Earth’s magnetic field
– Favorable angular momentum distribution



DII EMFF Final Review Aug. 29, 2003

Angular Momentum ManagementAngular Momentum Management

• Being able to control the angular momentum gained by the 
individual satellites is crucial to the success of EMFF

• Because the torques and forces generated by EMFF are 
internal, there is no way to internally remove excess angular 
momentum from the system
– Angular momentum can be transferred from one spacecraft 

to another

• Since EMFF systems do not employ thrusters, other innovative 
methods must be used to remove the excess angular 
momentum
– The formation must interact with its environment

• Using the Earth’s magnetic field
• Using differential J2 forces
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Earth’s Magnetic FieldEarth’s Magnetic Field

• Many formation flight missions will operate in LEO.  

• The electromagnets will interact 
with the Earth’s magnetic field 
producing unwanted forces and 
torques on the formation

• The Earth’s magnetic field can be 
approximated by a large bar 
magnet with a magnetic dipole 
strength of 8*1022

• (EMFF Testbed ~ 2*104)
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Earth’s Magnetic FieldEarth’s Magnetic Field

• The Earth’s Magnetic field produces an insignificant 
disturbance force, but a very significant disturbance 
torque, due to the scaling of force and torque

~3*104-3*10-2 Nm~2*101 NmT ~ µ0 (µ1 µ2) / r3

~1*104-2*10-3 N~1*10-5 NF ~ µ0 (µ1 µ2) / r4

2-100 m> 6,378,000 md

5*105 Am28*1022 Am2µ

Another Sat.Earth
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Possible Solutions for Dealing with the Possible Solutions for Dealing with the 
Earth’s Magnetic FieldEarth’s Magnetic Field

• Ignore the disturbance forces from the Earth’s magnetic field on the 
formation as a whole
– This frees up the arbitrary dipole, but disturbance forces are still 

accounted for.

• Periodically alternate the magnetic dipole directions, so that the 
accumulated torques average to zero 

• Turn off all the satellites but one, and use the electromagnets like 
torque rods to dump the angular momentum

• Choose the arbitrary dipole wisely so that the total acquired angular 
momentum on the formation is zero

• Choose the arbitrary dipole wisely so that you can use the Earth as 
a dump for angular momentum.
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The Earth as a Momentum DumpThe Earth as a Momentum Dump

• Use the Earth’s dipole to our advantage by transferring 
angular momentum to the Earth
– Already done for single spacecraft using torque rods
– Can be expanded for use with satellite formations

• Strategy: 

– Pick a satellite to dump momentum
– Turn up its dipole strength to maximum
– Align the dipole to optimize momentum exchange
– Solve the remaining dipoles for the required 

instantaneous forces
– Once the required momentum has been dumped, pick 

another satellite that needs to dump momentum
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Simulation ResultsSimulation Results

• Satellites are undergoing a specific forcing profile in the presence of 
the Earth’s magnetic field
– This way the satellites that are not dumping momentum are still being 

disturbed by the Earth’s magnetic field.

• Each satellite starts off with excess angular momentum

• The satellite with the most excess momentum is selected for angular 
momentum dumping

• The formation is then maintained to have H<100 
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EMFF SimulatorEMFF Simulator

• Currently designing a software simulator to test different angular 
momentum control schemes

• Built in Mathematica, it has the ability to provide MatLab style outputs

• It will have the ability to test 
control algorithms in the 
presence of the Earth’s 
magnetic field or under the 
influence of the J2 disturbance 
force.

• Currently being used to verify 
angular momentum dumping 
algorithms in the presence of 
the Earth’s magnetic field.
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• Motivation:

– Dynamic analyses must be performed to verify the stability and 
controllability of EMFF systems.

• Objective:

– Derive the governing equations of motion for an EMFF system:

• Analyze the relative displacements and rotations of the bodies.
• Include the gyroscopic stiffening effect of spinning RWs on the 

vehicles.
– Linearize the equations, and investigate the stability and controllability of 

the system.
– Design a closed-loop linear controller for the system.
– Perform a closed-loop time-simulation of the system to assess the model 

dynamics and control performance.
– Experimentally validate the dynamics and control on a simplified

hardware system.

Objective : Objective : MultiMulti--Vehicle EMFF AnalysisVehicle EMFF Analysis
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• Two-spacecraft array
– Each has three orthogonal electromagnets

• EM pointing toward other spacecraft
carries bulk of centripetal load; others
assist in disturbance rejection

– Each has three orthogonal 
reaction wheels, used for system 
angular momentum storage and 
as attitude actuators

• State vector:

x r φ Ψ α1 α2 α3 β1 β2 β3 r· φ· Ψ
·

α· 1 α· 2 α· 3 β· 1 β· 2 β· 3
T

=

33--D Dynamics of 2D Dynamics of 2--S/C EMFF ClusterS/C EMFF Cluster
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33--D Nonlinear Translational EquationsD Nonlinear Translational Equations

• Translational equations of motion for spacecraft A:

• In er, eφ, eψ components:

• And the forcing terms are of the form:
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33--D Nonlinear Rotational EquationsD Nonlinear Rotational Equations

• Rotational equations of motion for spacecraft A:

• Torques:
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Linearization: Nominal PointLinearization: Nominal Point

• Conservation of Angular Momentum:

• Nominal State Trajectory:

Izz w, Ωz w, φ· 0+( ) Izz s, mr0
2+( )φ· 0+ 0=

Izz w, Ωz w, mr0
2φ0

·+ 0=≈

x0 r0 φ0 Ψ0 α1 0, α2 0, α3 0, β1 0, β2 0, β3 0, r·0 φ· 0 Ψ
·

0 α· 1 0, α· 2 0, α· 3 0, β· 1 0, β· 2 0, β· 3 0,
T

=

r0 φ0 t( ) 0    0    0    0    0    0    0    0   φ· 0   0    0    0    0    0    0    0
T

=

⇒
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1 0 0 0 0 0 0 0 0
0 r0 0 0 0 0 0 0 0
0 0 r0 0 0 0 0 0 0

0 0 0 Iz z s, 0 0 0 0 0

0 0 0 0 Irr s, Irr w,+ 0 0 0 0
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0 0 0 0 0 0 0 0 Ir r s, Ir r w,+
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0 0 0 2c– 0 0 0 c– 0 0 0

0 0 0 0 2c– 0 0 0 c– 0 0

0 0 0 0 0 0 0 0 0
0 0 0 c– 0 0 0 2– c0 0 0

0 0 0 0 c– 0 0 0 2– c0 0

0 0 0 0 0 0 0 0 0

∆r
∆φ
∆ψ
∆α1

∆α2

∆α3

∆β1

∆β2

∆β3⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

+

c2 0 0 c2 0 0 0 0 0 0 0 0

0
c2
2
-----– 0 0

c2
2
-----– 0 0 0 0 0 0 0
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Full-state system (n=18) has eigenvalues:

— Several poles on the 
imaginary axis and 
one unstable pole

— λ7,8 at +/- array spin-rate
— Poles move away from 

origin as       increases

EMFF StabilityEMFF Stability

λ1 2 3 4 5 6, , , , , 0= λ7 8, φ· 0±= λ9 10, iφ· 0±=

λ11 12, i
r0φ· 0

Irr s, Irr w,+( )
-------------------------------- m mr0

2 Irr s, Irr w,+
3

---------------------------+⎝ ⎠
⎛ ⎞±= λ13 14, i

r0φ· 0
Irr s, Irr w,+( )

-------------------------------- m mr0
2 Irr s, Irr w,+ +( )±=

λ15 16, ir0φ· 0
m

3 Izz s,
-------------±=

λ17 18, ir0φ· 0
m

Izz s,
---------±=

0φ�
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Current system is in 2nd order form:

Place in 1st order form:

Form controllability matrix:

System is fully controllable because System is fully controllable because CC has full rankhas full rank

EMFF ControllabilityEMFF Controllability

2 1[B AB A B A B]nC −= …

n : number of states

uxx BA +=� T]~~[ xxx �=

A
0 I

M 1– K– M 1– C–
= B

0

M 1– F
=

rank C( ) 18 n= =

FuxKxCxM =++ ~~~ ���
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EMFF Linear Controller DesignEMFF Linear Controller Design

From state-space equation of motion:

Form the LQR cost function:

Choose relative state and control penalties:
— ∆r : 10            : 5      ∆φ : 10-15   : 3      ∆ψ : 1              : 1
— All Euler angles and their derivatives : 1
— All electromagnets, all reaction wheels : 1

The cost, J, is minimized when:

Rxx: state penalty matrix        Ruu: control penalty matrix

[ ]∫
∞

+=
0

dtRRJ uu
T

xx
T uuxx

xxu KPBR T
uu −=−= −1PBPBRPAPAR T

uu
T

xx
10 −−++=

Algebraic Algebraic RicattiRicatti Equation (A.R.E.)Equation (A.R.E.)

uxx BA +=�

[ ] xxuxx CLABKABA =−=+=  �

r�∆ φ�∆ ψ�∆
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Simulation of EMFF DynamicsSimulation of EMFF Dynamics

Closed-loop time simulations were performed of both the 
nonlinear and linearized equations of motion

— Both employ the same linear feedback controller
“Free vibration” response was investigated

— Initial condition : deviation from nominal state of one or more 
degrees of freedom (∆r in the results shown here)

— Closed-loop response to perturbed initial condition is simulated
— Perhaps offers more insight than simulating response to random 

disturbances
Results demonstrate:

— the range in which the linearized equations are valid
— the range in which linear control is sufficient
— the importance of the relative control penalties chosen for the 

various degrees of freedom
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Simulation of EMFF Dynamics Results Simulation of EMFF Dynamics Results 
(I)(I)

Initial conditions: 1% deviation 
from nominal array radius

— Nonlinear and linear simulations 
diverge

— System remains stable in both 
simulations

Initial conditions: 0.001% deviation 
from nominal array radius

— Simulations of nonlinear and 
linearized equations are identical, 
except for small numerical error in 
angles ∆ψ, ∆α2, ∆α3, ∆β2, ∆β3

— Both use linear controller



DII EMFF Final Review Aug. 29, 2003

Simulation of EMFF Dynamics Results Simulation of EMFF Dynamics Results 
(II)(II)

Initial conditions: 4% deviation 
from nominal array radius

— Divergence of radial separation shows 
linear control not sufficient in this case.

Redesign with greater penalty on ∆r?
Investigate nonlinear control techniques?

— Linear simulation does not capture 
divergence of dynamics.

Initial conditions: 3% deviation 
from nominal array radius

— Radial separation remains stable
— Elevation angle of array may go unstable 

(probably numerical error).
— Check by increasing relative penalty on

∆ψ and redesigning controller.
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xacent
2Ω=

4

2
2

16mx
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• 1-D simplification of linearized 3-D dynamics
• Constant spin rate for data collection
• Relative radial position maintenance: disturbance rejection
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Simplified System: SteadySimplified System: Steady--State SpinState Spin
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Perturbation Analysis:Perturbation Analysis:

Perturbed Dynamics of SteadyPerturbed Dynamics of Steady--State State 
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Use binomial formula 
to expand terms
Neglect H.O.T.
Solve for S.S. Control 
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Unstable dynamics:Unstable dynamics:
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• Follow same control design
process as for full-state, 3-D system:

• Select state and control penalties:

• Solve the A.R.E. analytically by 
enforcing
that P must be positive semidefinite:

• The displacement and velocity
feedback gains are then:

Linear Control DesignLinear Control Design

[ ]∫
∞

+=
0

dtRRJ uu
T

xx
T uuxx

xxu KPBR T
uu −=−= −1

ρ=uuR⎥
⎦

⎤
⎢
⎣

⎡
=

00
0λ

xxR

0
2212

1211 ≥⎥
⎦

⎤
⎢
⎣

⎡
=

PP
PP

P

[ ]2212

2
1 2 PPPBRK T

uu ρ
Ω

== −
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• Now solve for the closed-loop dynamic matrix, where:

• Evaluate as       increases from 0

• The closed-loop poles for 
the most efficient controller 
lie along this curve.

StateState--Space AnalysisSpace Analysis

[ ] xxuxx CLABKABA =−=+=  �xu K−=

ρ
λ ∞
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• Nearly frictionless
1-dimensional airtrack

• Can be set up in a
stable or unstable
configuration, depending 
on the tilt angle

• Unstable mode has dynamics 
nearly identical to a 1-DOF
steady-state spinning cluster!

– Closing the loop on the unstable configuration will demonstrate an 
ability to control systems such as the steady-state spinning cluster.

Experimental Validation: 1Experimental Validation: 1--D AirtrackD Airtrack

Ultrasound 
displacement sensor

Free magnet
on “slider”

Fixed 
electromagnet
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Free Permanent 
Magnet

Fixed 
Electromagnet

5
0

0
2,1

6
mx

is p

π
µµ

±=

Stable poles:Stable poles:

Similar linearization, state-space 
analysis, and LQR control designLQR control design to 
steady-state spin system
Open-loop step response

— Very light damping means poles are nearly on 
the imaginary axis, as expected

Closed-loop step response has reduced 
overshoot and increased damping

[ ]33.474.11=K
Optimal gains:Optimal gains:

Pole−Zero Map
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Optimal gains:Optimal gains:
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Experimental Results: Unstable Experimental Results: Unstable 
AirtrackAirtrack

Similar dynamics and control designcontrol design to 
steady-state spin and stable-airtrack
Open-loop response is divergent
Closed-loop response is stable!
Stabilizing this system means we should 
be able to perform steady-state control 
and disturbance rejection for a spinning 
cluster!
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Open-loop response is divergent.
— Constant current is applied to EM
— Magnets diverge from steady-state 

separation distance
Fall apart if disturbed one way
Come together if disturbed the 
other way

Closed-loop response is stable!
— Oscillates at about ~0.2 Hz
— Maximum displacement from 

steady-state location is ~1 cm
— Performance limitations due to 

model uncertainty and amplifier 
saturation

Video: Control of Unstable AirtrackVideo: Control of Unstable Airtrack
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• Modeled the dynamics of a two-vehicle EMFF cluster
– Nonlinear, unstable dynamics
– Linearized dynamics about a nominal trajectory (steady-state spin)
–– Stability:Stability: 3-D system has six poles at the origin, ten poles along the 

imaginary axis, and a stable/unstable pair of poles at the array spin-rate
–– Controllability:Controllability: System is fully controllable with 3 electromagnets and 3 

reaction wheels per vehicle
• Simulated two-vehicle EMFF closed-loop dynamics

– Demonstrated stabilization of unstable nonlinear dynamics using linear control
– We can investigate for future systems:

• whether linear control is sufficient for a given configuration
• what the “allowable” disturbances are from the nominal state
• how the relative state and control penalties may improve the closed-loop 

behavior
• Validated EMFF dynamics and closed-loop control on simplified hardware system

– Airtrack: stable and unstable configurations (1-DOF)
– Demonstrated stabilization of an unstable system with dynamics similar to an 

EMFF array undergoing steady-state-spin

Control SummaryControl Summary
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OutlineOutline

• Motivation

• Fundamental Principles
– Governing Equations
– Trajectory Mechanics
– Stability and Control

• Mission Applicability
– Sparse Arrays
– Filled Apertures
– Other Proximity Operations

• Mission Analyses
– Sparse Arrays
– Filled Apertures
– Other Proximity Operations

• MIT EMFFORCE Testbed
– Design
– Calibration
– Movie

• Space Hardware Design Issues
– Thermal Control
– Power System Design
– High B-Field Effects

• Conclusions
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EMFF RoadmapEMFF Roadmap
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EMFF Applications in 10EMFF Applications in 10--20 Years20 Years
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EMFF Applications in 30EMFF Applications in 30--40 Years40 Years

Reconfigurable Arrays & Staged Deployment

Reconfigurable Artificial Gravity 
Space Station 

Protective magnetosphere
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Additional Mission ApplicationsAdditional Mission Applications

Distributed Optics

Non-Keplerian Orbits

Primary 
mirror

Primary 
mirror
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OutlineOutline

• Motivation

• Fundamental Principles
– Governing Equations
– Trajectory Mechanics
– Stability and Control

• Mission Applicability
– Sparse Arrays
– Filled Apertures
– Other Proximity Operations

• Mission Analyses
– Sparse Arrays
– Filled Apertures
– Other Proximity Operations

• MIT EMFFORCE Testbed
– Design
– Calibration
– Movie

• Space Hardware Design Issues
– Thermal Control
– Power System Design
– High B-Field Effects

• Conclusions
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‘‘Stationary’ OrbitsStationary’ Orbits

• For telescopes and other observation missions with 
an extended look time, holding an fixed observation 
angle is important

• Satellite formations in Earth’s orbit have an intrinsic 
rotation rate of 1 rev/orbit

• EMFF can be used to stop this rotation and provide 
a steady Earth relative angle.

• Using Hill’s equations…

2

2

3 2
2

x

y

z

x n x ny a
y nx a
z n z a

= + +
= − +
= − +

�� �
�� �
��

2 2ˆ ˆ3f x m n x z m n z= − +
G

2 4
3

y z
x f m n x z

x y
τ τ

⎛ ⎞
⎜ ⎟= × = −⎜ ⎟
⎜ ⎟
⎝ ⎠

GG G G

• Unless the required force vector aligns with the 
position vector, torques are produced

– Zero torque solutions are 
• Holding a satellite in the nadir direction
• Holding a satellite in the cross-track 

direction
• For other pointing angles, torques will be 

produced
• Any angular momentum buildup can be removed 

by: 
– Moving to an opposite position.
– Interacting with the Earth’s magnetic field
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Rotating Linear Array:  2 vs. 3 SpacecraftRotating Linear Array:  2 vs. 3 Spacecraft

Mission Efficiency metric:

Bm
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arrayomc
wJ =

totarray mm 2=

Bm
B

inininaF tot
oo

B
ooii

o
2

4

22

4
2

4

2
1

)(2
3 ωπµ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

Two Spacecraft
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J
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πµ
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Three Spacecraft

innerouter tottotarray mmm += 2

• Adding combiner almost triples mission efficiency
• Trend Continues adding more spacecraft increases 

mission efficiency
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RLA:  Mission Efficiency TrendsRLA:  Mission Efficiency Trends

• Normalized Mission Efficiency

41

1 1

n

i
n

i
nJ
n

−−

=

⎛ ⎞
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∑2

0
o array

niaJ
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=

• Comparing J3/J2, then 
J4/J3, J5/J4, J6/J5, etc.

• Diminishing returns of 
adding S/C 
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3 S/C RLA:  EMFF System Trades3 S/C RLA:  EMFF System Trades

arrayinner totalM Mγ=
1

2 arrayouter totalM Mγ −=

•Define Mass Fractions:
•Identical or Mother-Daughter Configuration

Center Spacecraft experiences no 
translation no mass penalty 
suggests larger center spacecraft

•Identical Configuration is non-optimal
•Higher rotation rate for mother-daughter 
configuration for fixed masses
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Case Study: Sparse aperture (TPF)Case Study: Sparse aperture (TPF)

sc dry sa core coilm m m m m= + + +

• Compare total system mass for various 
propulsion options with EM option for 
the TPF mission (4 collector and 1 
combiner spacecraft)

• Array is to rotate at a fixed rotation rate 
(ω = 1rev/2 hours)

• All collector spacecraft have same EM 
core and coil design

• All spacecraft have the same core
• Force balancing equations:

s/3 s/6 s/6 s/3

N SN SN SN S N S
EM mass components

Superconducting wire (msc)
Density (ρSt) 13608 kg m-3

Copper coil (mcoil)
Density (ρCu) 8950 kg m-3

Resistivity (ρ) 1.7x10-8 Ωm

Solar Array (msa)
Power to mass conv (Pconv) 25 W kg-1

*Source: TPF Book (JPL 99-3)

TPF spacecraft* (mdry)
Collector Spacecraft 

Dry 600 kg, 268 W
Propulsion 96 kg, 300 W  
Propellant 35 kg

Combiner Spacecraft 
Dry 568 kg, 687 W 
Propulsion 96 kg, 300 W  
Propellant 23 kg

1 12 13 14 15cent M M M MF F F F F= + + +

2 21 23 24 25cent M M M MF F F F F= − + + +

1 2 3 4 5
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Case Study: Sparse aperture (TPFCase Study: Sparse aperture (TPF--2)2)

• Cold Gas - Low Isp, high propellant requirements
– Not viable option

• PPTs and Colloids - Higher Isp

– still significant propellant over mission lifetime
• FEEPs – Best for 5 yr mission lifetime

– Must consider contamination issue
– Only 15 kg mass savings over EMFF @ 5 yr mark

• EM coil (R = 4 m) (Mtot = 3971 kg)
– Less ideal option when compared to FEEPs even for 

long mission lifetime
• EM Super Conducting Coil (R = 2 m) (Mtot = 3050 kg)

– Best mass option for missions > 6.8 years
– No additional mass to increase mission lifetime
– Additional mass may be necessary for CG offset

• Estimated as ~80 kg



• Massachusetts Institute of 
Technology

• Space Systems Laboratory

• Lockheed Martin Corporation
• Advanced Technology Center

EMFF TestbedEMFF Testbed
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EMFFORCE Project OverviewEMFFORCE Project Overview

• Goal:  Demonstrate the feasibility of electromagnetic 
control for formation flying satellites

• Design and build a testbed to demonstrate 2-D formation flight 
with EM control
– Proof of concept
– Traceable to 3-D
– Validate enabling technologies

• High temperature superconducting wire



From Design to RealityFrom Design to Reality

Metrology and 
Comm

Gas supply 
tank

Magnet and 
cryogenic 

containment

Electronics 
boards

Batteries
Base and 

gas 
carriage

Reaction 
wheel
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Testbed OverviewTestbed Overview

• Functional Requirements:
– System will contain 2 vehicles
– Robust electromagnetic control will replace thrusters
– Each vehicle will be:

• Self-contained (no umbilicals)
• Identical/interchangeable

• Vehicle Characteristics
– Each with 19 kg mass, 2 electromagnets, 1 reaction wheel

• Communication and processing
– 2 internal microprocessors (metrology, avionics/control)
– Inter-vehicle communication via RF channel
– External “ground station” computer (operations, records) 

• Metrology per vehicle
– 1 rate gyro to supply angular rate about vertical axis
– 3 ultrasonic (US) receivers synchronized using infrared (IR) pulses
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Electromagnet DesignElectromagnet Design

• Coil wrapped with alternating layers of wire and Kapton
insulation

– 100 wraps
– Radii of 0.375m and 0.345m

• Toroid-shaped casing: Insulation & Structural component
• Operable temperature at 77 K
• Surround by liquid nitrogen 

• American Superconductor Bi-2223 Reinforced 
High Temperature Superconductor Wire

– Dimensions
• 4.1 mm wide
• 0.3 mm thick
• 85 m length pieces

– Critical Current
• 115 amps, 9.2 kA/cm2

– Below 110 K
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Containment System DesignContainment System Design
• Requirements:

– Keep the wire immersed in liquid 
nitrogen.

– Insulate from the environment the wire 
and the liquid N2.

• Non-conductive material.
– Stiff enough to support liquid N2

container and its own weight.
• Material: Foam with fiber glass wrapped 

around it.

Top view of half of the Container

Section of 
container
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Power SubsystemPower Subsystem

• Coil & Reaction Wheel Power:  
– Rechargeable NiMH D-cell batteries
– MOSFET controller – uses H-bridge 

circuit to control current through gates
– 20 minute power duration

• Coil: 100 Amps @ 5 Volts

Electromagnet
1

4

2

3

- 3.6 V      
+ 35 Amps

35 A
35 A

> 100 Amps
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Air Carriage and Reaction Wheel Air Carriage and Reaction Wheel 

• Reaction Wheel
• Store angular momentum

– Provide counter-torques to electromagnets
– Provide angular control authority
– 0.1 Nm Torque at 10 Amps

• Flywheel Requirements:  
– non-metallic Urethane Fly Wheel
– Maximum wheel velocity at 7000 RPM

• Motor tested in EM field with no variation in performance

• 2-D Friction-less environment provided by gas carriage
– allows demonstration of shear forces, in concert with 

reaction wheel
– Porous Membrane, Flat air bearings provide 

pressurized cushion of gas 
– CO2 gas supply: rechargeable compressed gas 

tank, 20 minute duration
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Model CalibrationModel Calibration
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• B-field measurements
– Axial and Radial B-field 

measurements taken at varying 
radii.

– Inner coil stack
• .67 m inner diameter
• 40 turns
• I = 30 amps



DII EMFF Final Review Aug. 29, 2003

Degrees of Freedom ValidationDegrees of Freedom Validation

• Initially we had problems demonstrating shear forces

• The reaction wheel is designed for small shear forces

• Vehicle tends to ‘stick’ to table, so larger forces are needed to move the 
vehicle

• Larger shear forces produce larger torques

• The torque generated would cause the vehicle to rotate

• As the vehicle rotated, the dipoles aligned causing the vehicles to attract

• Used Vehicle’s ability to steer the dipole to compensate

NS

S

N

BA
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EMFF: Validation of Degrees of FreedomEMFF: Validation of Degrees of Freedom
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Testbed Future WorkTestbed Future Work

• Control Testing
a. One vehicle fixed – disturbance rejection
b. One vehicle fixed – slewing, trajectory following
c. Both vehicles free – disturbance rejection
d. Both vehicles free – slewing, trajectory following
e. Spin-up

• Vehicle Design
– Containment system redesign: Plastic or copper tubing
– Reaction Wheel

• Motor is too weak to counteract high torque levels
• Reaction wheel is also possibly undersized

• Three vehicle Control Testing
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OutlineOutline
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Cryogenic ContainmentCryogenic Containment

• Significant research concerning maintaining 
cryogenic temperatures in space
– Space Telescope Instrumentation
– Cryogenic propellant storage

• Spacecraft out of Earth orbit can use a sunshield 
that is always sun-pointing to reflect radiant energy 
away

• For Earth orbit operation, this won’t work, since 
even Earth albedo will heat the ‘cold’ side of the 
spacecraft

• A cryogenic containment system, similar in concept to that used for the EMFF  testbed
must be implemented, using a combination of a reflective outer coating, good insulation, 
and a cyo-cooler to extract heat from the coil

• Using a working fluid to carry heat around to the cry-cooler will be explored, or possibly 
using the wire itself as the thermal conductor
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Efficient High Current SuppliesEfficient High Current Supplies

• The existing controller for the testbed was based on a 
pulse width modulated controller found for use with 
radio controlled cars and planes

• An H-bridge is used to alternate applied potential to the 
coil, with the next current delivered dependent on the 
amount of time the voltage is applied in a given direction

• The drawback is that current is always flowing through 
the batteries, which both provide a power sink as well as 
dissipate heat

• One solution may be to incorporate very high Farad 
capacitor instead of a batter, to reduce the internal 
resistance

• Alternatively, a method of ‘side-stepping’ the storage 
device altogether may be employed, allowing the 
current to free-wheel during periods of low fluctuation
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High BHigh B--field effects: Findings in literaturefield effects: Findings in literature

• NASA reports, Lockheed Martin reports, other contractors (when 
available), IEEE journal articles

• Nothing for very high fields (0.1 T and above)

• Effects of earth’s magnetic field (0.3 gauss or so)

• Effects of on-board field sources such as
– Magnetic latching relays
– Traveling wave tubes
– Tape recorders
– Coaxial switches
– Transformers
– Solenoid valves
– Motors
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Vulnerable equipmentVulnerable equipment

• All these fields are much smaller than what is being projected 
for magnetic steering coils

• Equipment traditionally known to be susceptible to magnetic 
effects:
– Magnetometers
– Photomultipliers
– Image-dissector tubes
– Magnetic memories
– Low-energy particle detectors
– Tape recorders

• Digicon detectors in Hubble FOS were found to be vulnerable to 
magnetic effects

• Quartz-crystal oscillators ditto (AC fields)
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High field concernsHigh field concerns

• Other effects may come into play that are negligible at low field 
strengths
– Eddy currents in metal harnesses
– Hall effects in conductors
– Effects in semiconductors?

• Most EMI requirements hard to meet

• Shielding requirement translates into a mass penalty

• Pursuing more literature results, but this is effectively a new 
regime – may require testing
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Shielding ConsiderationsShielding Considerations

• Attenuation of a DC magnetic field resulting from an enclosure scales approximately as

• Where µ is the permeability, ∆ is the thickness of the material, and R is the characteristic 
radius of enclosure

• Some high permeability materials:

A =
µ
2

∆
R

• Reducing a 600 G (0.06 T) field to ambient (0.3 G) requires an attenuation of 
2x103, or a minimum ∆/R of 0.01

• This is .1 mm thickness for each 10 cm of radius enclosed

Material Density (lbs/cu-in) Permeability Saturation (G)
Amumetal 0.316 400000 8000
Amunickel 0.294 150000 15000
ULCS 0.0283 4000 22000
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Further Shielding ConsiderationsFurther Shielding Considerations

• Geometry
– Shielding acts to divert field lines around components
– Gentle radii are better for re-directing field lines than sharp corners

• Size
– Smaller radii are more effective, so shielding should envelop the component 

to be protected as closely as possible
• Continuity

– Separate pieces should be effectively connected either mechanically or by 
welding to insure low reluctance

• Closure
– Components should be completely enclosed, even if by a rectangular box to 

shield all axes
• Openings

– As a rule, fields can extend through a hole ~5x the diameter of the hole
• Nested Shields

– In high field areas, multiple shield layers with air gaps can be used very 
effectively.  Lower permeability, higher saturation materials should be used 
closer to the high field regions
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Shielding with Auxiliary CoilsShielding with Auxiliary Coils

• In addition to high permeability materials, shielding can be achieved locally using 
Helmholtz coils

• An external field can be nullified with an arrangement of coils close to the region 
of interest

• The small coil size requires proportionally smaller amp-turns to achieve nulling of 
the field 

– Will not significantly affect the main field externally
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ConclusionsConclusions

• There are many types of missions that can benefit from propellantless
relative control between satellites

– Provides longer lifetime (even for aggressive maneuvers)

– Reduces contamination and degradation

• Angular momentum management is an important issue, and methods are 
being developed to de-saturate the reaction wheels without using thrusters

• Preliminary experimental results indicate that we are able to perform 
disturbance rejection in steady state spin dynamics for multiple satellites

• Optimal system sizing has been determined for relatively small satellite 
arrays. Currently larger formations are being investigated

• Although low frequency magnetic interference data is difficult to find, 
shielding against the relatively low fields inside the coils appears to be 
possible

• Preliminary validation with the MIT Testbed has been achieved, and more 
complex maneuver profiles will be accomplished with future upgrades


