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a) The first thing to note in this question is that we are considering T and p as variables (which we end 
up holding constant). That means that we need to use the Gibbs free energy. 
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the constant volume heat capacity of an ideal gas is independent of volume. 
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Now we want to create a Maxwell relation between S and f in order to get a function for S. 
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So the entropy is proportional to the square of the extension distance. 

H = U + pV 
dH = dU + pdV + Vdp 
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So H is constant for all extensions l. 

b) Since we are told that it is an adiabatic process (δq=0, so dU=δw=fdl), we know that we need to start 
with the expression for internal energy U. We also know that by definition, for constant volume 
dU=CvdT. 
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