
          
   

 
     

 
      

 
      

 
       

 
        

    
 

    
   
             

  
 

               
                

                
         

              
             

            

         

 
          

 
             

           
      

 
 

         
        

 
           

                
   

 

9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 12: Hypothesis Testing 

I. Objectives 
1.	 Understand the hypothesis testing paradigm. 

2.	 Understand how hypothesis testing procedures are constructed. 

3.	 Understand how to do sample size calculations. 

4.	 Understand the relation between hypothesis testing, confidence intervals, 
likelihood and Bayesian methods and their uses for inference purposes. 

II. The Hypothesis Testing Paradigm and One-Sample Tests 
A. One-Sample Tests 
To motivate the hypothesis testing paradigm we review first two problems. In both cases there is 
a single sample of data. 

Example 3.2 (continued) Analysis of MEG Sensor Bias. Is there a noise bias in this SQUID 
sensor? Here we have a sample 1,..., xn where we model each xi : ( ,  ) We assume that x	 N µ σ 2 . 
µ is unknown and σ 2 is known. If there is bias, then µ ≠ 0, and µ > 0 would suggest a positive 
bias where µ < 0 would suggest a negative bias. 

Example 2.1 (continued) Behavioral Learning. Has the animal learned the task? We have 
data 1,..., x and we recall that our model is ( ,  )  where p is unknown. We define x n	 xi : B n  p  

1learning as performance greater than expected by chance. In particular, chance suggests p = 
2 

1	 1(binary choice), learning suggests p > , whereas impaired learning suggests p < . 
2	 2 

To define the hypothesis testing paradigm we state a series of definitions. 

A hypothesis is the statement of a scientific question in terms of a proposed value of a 
parameter in a probability model. Hypothesis testing is a process of establishing proof by 
falsification. It has two essential components: a null hypothesis and an alternative 
hypothesis. 

The null hypothesis is a stated value of the parameter which defines the hypothesis we want 
to falsify. It is usually stated as a single value although it can be composite. We denote it as H0. 

The alternative hypothesis is the hypothesis whose veracity we wish to establish. It is usually 
defined by a value or set of values of the parameter that are different from the one specified in 
the null hypothesis. We denote it as HA. 



 

                  
    

  
 

            
     

 
   
 

  
    

          

   
 

   

 

                                                       

   

 

 
             

        

           

           

        
 

                   
                

               
  

 
                      

          
 

                   
                 

 
 

page 2: 9.07 Lecture 12: Hypothesis Testing 

To establish the result, we carry out a test in an attempt to reject the null hypothesis. The test is 
a procedure based on the observed data that allows us to choose between the null and 
alternative hypothesis. 

Example 3.2 (continued) Analysis of MEG Sensor Bias. For this example the null hypothesis 
could be H0 : µ = 0 and alternative hypotheses could be 

HA : µ > 0 

or 
HA : <µ 0. 

Example 2.1 (continued) Behavioral Learning. Here the null hypothesis is H : p = 1 and the 0 2 
alternative hypotheses could be one-sided as either 

1HA : p > 
2 

or 
1HA : p < 
2 

or two-sided 
1HA : p ≠ . 
2 

To investigate the hypothesis we require a test statistic. A test statistic is a statistic whose 
values will allow us to distinguish between the null and the alternative hypotheses. 

Example 3.2 (continued) Analysis of MEG Sensor Bias. For this example we recall that 
2σ x N ( ,  ) Hence, we can choose because of its distributional properties. In general, : µ . x , 
n 

choosing the statistic is an important issue. Here there are two cases: 

Case i): If x >> 0 or x << 0 we conclude µ ≠ 0. That is, we would be willing to conclude µ ≠ 0 if 
| | is sufficiently large. Indeed, the larger is in absolute value, the more likely we are to x x 
conclude µ ≠ 0. If our data allow us to reach this conclusion, we say we reject the null 
hypothesis H0. 

Case ii) If x is close to 0, we say we fail to reject the null hypothesis H0. We do not say we 
accept the null hypothesis because, in this case, we do not reach a conclusion. 

There are two types of errors we can commit in hypothesis testing. If we reject H0 when it is 
true, this is an error. It is called a Type 1 error. The probability of the error is denoted as α. We 
write 
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α = Pr(rejecting 0 | 0H H is true). 
In Example 3.2 we have 

α = Pr( x c> α | µ = 0). 

We choose α as small as possible. Typical values are α = 0.01 and α = 0.05. What is cα ? To 
determine it, we compute 

Pr(Type I error) = Pr(rejecting H H| true) = α.0 0 

We want α to be small 

= Pr( x c α | µ = 0α > µ = 0) 
1 1
( − µ ) n c  − µ )n x 2 0 2 ( α 0α = Pr( > )
σ σ 

1 
n x − µ

= Pr( 
2 

σ 
0 > z )1−α 

σwhere z1 is a quantile of the standard Gaussian. Hence, we have c = µ + z . Some −α α 0 1−α 1 
2n 

values of for the corresponding values of α are z1−α 

α z1−α 

0.05 1.645 
0.025 1.96 
0.01 2.325 

The area to the right of z1 or cα is the critical region. It has probability content of α. The −α 
value cα is the cut-off value. This test based on the normal distribution is the z-test. 

If H0 is not true, i.e. HA is true and we fail to reject H0 , then this is also an error. It is 
termed a Type II error or β error and is defined as 

Pr(Type II error) = Pr(fail to reject H H is true) 0 | A 

Assume HA is true, i.e. µ µA > 0. Then we have = 

= Pr( x c α | µ = Aβ < µ ) 
1 1
( − µ ) n c( − µ )n x 2 A 2 α A= Pr( < )
σ σ 

1 
2 ( − µA )n x 

= Pr( < z )βσ 
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We do not talk in terms of β but 1− β which is the power of the test. The power of the test is 
the probability of rejecting the null hypothesis when it is false. We compute it as 

power =1− β = Pr(rejecting H H| is true) 0 A 
= Pr( x c | => µ µ ). α A 

Remark 12.1. You should not carry out a test if the power is not at least > 0.80 for important HA. 

Remark 12.2. Never report a negative result (failing to reject H0 ) without reporting the power. 

Remark 12.3. A statistical test is an “information assay.” As such, it is only as useful as it is 
powerful against an important alternative hypothesis. 

If we reject H0 we report the p-value which is the smallest value of α for which we can reject 
H0. The p-value is also the probability of all events that are at least as rare as the observed 
statistic. It is the probability that we are making a mistake in rejecting the null hypothesis when 
the null hypothesis is true. An observed value of the test statistic has statistical significance if 
p < α. Statistical significance does not imply scientific significance. 

Example 3.2 (continued) Analysis of MEG Sensor Bias. In this example assume we have 
500 observations 1,..., x and the standard deviation is σ = 1.1  10  11x × − f Tesla  . Suppose we wish n 
to test H0 : µ = 0 against the alternative hypothesis HA : µ > 0 with α = 0.05. If we have 

x = 0.11 10 −11 f Tesla then × 

1 1 
2 2( )  (500)  (0.11)  n x z = = = 2.25 
σ 1.1 

From the Table of a standard normal distribution we have 

z = z = 1.645 1−α 0.95  

or α = 0.05 and we see p = 0.0122. Therefore, we reject and conclude that there is a positive bias 
in the magnetic field around this recording sensor. 

Example 2.1 (continued) Behavioral Learning. For this experiment if our hypotheses are 

1H0 : p = 
2 
1HA : p > 
2 

kWe have n = 40 trials and observe k = 22 and p̂ = . Based on our Central Limit Theorem 
40 

results in Lecture 7, we can analyze this question using the Gaussian approximation to the 
binomial provided np > 5 and n(1 − p) > 5. Because we have 
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1 1⎛ ⎞  np(1 − p) = 40 = 10 > 5⎜ ⎟2 2 ⎝ ⎠  

we can use the Gaussian approximation to the binomial to test H0. Notice that if np(1 − p) > 5 
then it must be that np > 5 and n(1 − p) > 5. If we take α = 0.05, our test statistic is 

1 1 
2 2( ˆ − ) (40) (0.55 − 0.5) n p p 	  6.32(0.05)z = =	 = = 0.632 1 1 1p 2	 1 2[ (1  − p)] 	  ⎛ ⎞  

⎜ ⎟ 24⎝ ⎠  

z =1.645, < and we fail to reject H0.hence z z 	 We see that 1−α	 1−α 

1⎛ ⎞1.645 1
2 ⎜ ⎟  

1− [ (1  − p)]  1 2z α p	 ⎝ ⎠c p	 = +  = 0.63 = +α 1 
2 2 6.32 n 

What is the power of this test if the true probability of a correct response is pA = 0.72? 

power = Pr(rejecting 0 | A = 0.72) = Pr( p̂ > 0.63 | pA = 0.72) H H  
1 1 
n p p  ( ˆ − ) n c( − p )2 A 2	 α A= Pr( 1 > 1 | pA = 0.72) 

[ pA (1 − pA )]2 [ pA (1 − pA )]2 

1 
2(40) (0.63 − 0.72) = 1−Φ  [ 1 

2[(0.18)(0.72)] 
−(6.32)(0.09) = 1−Φ  [ ]

(.36) 
= 1−Φ  −  [ 1.58] 
= 1− 0.057 = 0.943. 

Therefore, if the true propensity to respond correctly were pA = 0.72 then there was a probability 
of 0.943 of rejecting the null hypothesis in this case. 

B. One-Sample Test, Power and Sample Size Calculation 
Given a null and a one-sided alternative hypothesis 

H : =µ µ0 0 
H µ µ  µ  >A : = A 0 

we compute the power as 

http:6.32)(0.09
http:0.18)(0.72
http:6.32(0.05
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Power = Pr(rejecting H H   is true) 0 | A 
1 
2 ( − µ0 )n x 

= Pr( > z | = 1−α µ µA )
σ 

z σ1−α= Pr( x >  +  µ0 1 | µ µ  = A ) 
2n 

z σ1−α 
A > 0 − A 1 µ µ  A )= Pr( x − µ  µ µ  + | = 

2n 
1 1 

−n x ( − µ ) n (µ µ  )2 2 0 A= Pr( > + z1−α | = A 
A µ µ )

σ σ 
1
(µ µ  ) n 

1
(µ µ  )n − −2 0 A 2 0 A1−Φ( + z1−α ) = ( 1−αΦ −  z − )

σ σ 
1 
2n (µA − µ0 )

= Φ(zα + )
σ 

because −z = z . Similarly, if we have 1−α α 

H : =µ µ0 0 
HA : µ µ  µ  = A < 0 

then it is easy to show that 

1 
2n (µ0 − µA )power = Φ[ + zα ]σ 

In general for a one-sided alternative 

1 
2n | µ0 − µA |power = Φ[ + zα ]σ 

We use these formulae to derive expressions for sample size calculations. Notice that 

1 
n | µ − µ |

power = Φ(
2 0 A + zα )σ 

1 
n | µ − µ |

power = 1 − β = Φ(
2 

σ 
0 A + z )α 

If we apply Φ−1 to the left and right hand sides of the equation above we get 

1 

−1 −1 n 2 | µA − µ0 |Φ (1 − β ) = Φ [Φ( + zα )] σ 
1 
n 2 | µA − µ0 |z = + z1−β ασ 

2n 
1
| µA − µ0 |z − z =1−β α σ 



 

         
 

   

 
  

 
          

                  
              

      
 

   

 
            

   
 

               

             
  

 
    

          
 

  
            

     
  

   

 
                

               

               

                

  
 

page 7: 9.07 Lecture 12: Hypothesis Testing 

Or since −z = z we obtain the sample size formula α 1−α 

σ 2 (z1−β + z1−α )
2 

n = 2Δ 

where Δ =| µ0 − µA | .  

Example 3.2 (continued) Analysis of MEG Sensor Bias. How many measurements should 
Steve Stufflebeam make daily to be at least 80% sure that if there is a positive drift of 

−0.1 10× 11 f Tesla he can detect it with α = 0.05? To answer this question, we apply our sample 

size formula with 1.645, z = 0.84, σ = × −1 f Tesla and we obtain z = 1.1 10 0.95 0.80 

2 2(1.1) (1.645 + 0.84)n = 
(0.1) 2 

1.21× 6.18 n = 
0.01 

n = 748 

Therefore, in our problem studied above, we should have taken around 750 measurements 
instead of 500. 

2 
Remark 12.4. The ratio σ 

2 
is like the inverse of a signal-to-noise ratio. As we want a smaller 

Δ 
Type I error (z1−α ),  and/or more power n increases. Similarly, n increases with σ 2 and 

2decreases with Δ . 

III. One-Sample Two-Sided Tests 
If the alternative hypothesis is two-sided then we need to construct a two-sided test. 

A. Two-Sided Tests 
Example 3.2 (continued) Analysis of MEG Sensor Bias. Suppose our null and alternative 
hypotheses for this problem are respectively 

H0 : µ = 0  
HA : µ ≠ 0.   

This alternative hypothesis implies that we would reject H0 for either a positive bias or negative 
2σbias. Under we have : ( ,µ . We would therefore reject if >> µ = 0 orH0 x N ) H0 x 0 if 
n 

<< µ We take as our test statistic and we will reject if | |  0x 0 = 0. x H0 x >> . Pick α and take 
αα α  α+ Since we do not favor µ > more than µ < 0, we take α = α To reject we = 0 = . H1 2. 1 2 0 ,2 

consider 
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Pr(| |> α ) = Pr( > α or x < −cα )x c x c 
2 2 2 

1 11 1 
2 2 22) n x − µ ) ( α − µ ) 

= Pr( > 
n x ( − µ0 ) n c( α 

2 
− µ0 ( 0 n c  

2 0 or < − )
σ σ σ σ 

= Pr(z z> 1−α or z < −z1−α )
2 2 

Pr(| |> 1−α 
2 

= z z  ) 

This is a two-sided test because we reject H0 for either very large positive or negative values 
of the test statistic. We reject H0 for | |> 1−α 

2
or equivalently, we reject H0 ifz z

σ| |> α = µ + z αx c 
2 0 1 1− 22n 

Examples of α and z1−α are 
2 

α z1 α− 2 
0.10 1.645 
0.05 1.96 
0.01 2.58 

Example 3.2 (continued) Analysis of MEG Sensor Bias. We consider 

H0 : µ = 0  
HA : µ ≠ 0  

Suppose we pick α = 0.05, we assume σ = 1.1 and we compute x = −0.11, then we have 

1 1 
2 2( )  −(500)  0.11  n x z = = = −2.25 
σ 1.1 

and z −α = z =1.96 . Because −2.25 < −1.96, we have z < −z −α and hence, we reject H0.1 2 0.975  1 2 

Example 2.1 (continued) Behavioral Learning. We can perform a similar analysis for the 
learning example 

1H0 : p0 = 
2 
1HA : p ≠ 
2 

This alternative implies either impaired learning or learning and would lead us to reject if 
1 1 p̂ >>  or p̂ << . We have that under the Gaussian approximation 
2 2 



 

   

 
      

 
    
 

   
 
     
 

      

    

 

 
        

      
         
             

    
 

          

   

    

 
     

 

   

 
  

 
            

   
 

 

page 9: 9.07 Lecture 12: Hypothesis Testing 

2 
1
( ˆ − 0n p p  )

z = 
[ (1− p ]

1 
p0 0) 2 

Hence, given α we reject H0 if 

z z α  or z< zα> 1− 2 2 

or equivalently if 

p c  or p̂ < −cˆ > α α
2 2 

p0(1 − p0) 1where cα = p +[ ] z . Given α = 0.10 , we obtain z = z =1.645 and since 0 2 1−α 1−α 0.95  2 2 2n 
k 22 p̂ = = , we have 
40 40 

1
( ˆ 

1 
2 2n p p  − 0 ) (40) (0.55 − 0.5) 6.32(0.05)z = = = = 0.632 1 1 1[ (1  − p )]  2 1 2p0 0 ( )  24 

Because z z we fail to reject H< 0.0.95

B. Power for the Two-Sided Alternative 
It is straightforward to show that for the mean of a Gaussian distribution with known variance if 
the null hypothesis is H0 : = 0 versus the two-sided alternative µ µ0 the power of the µ µ HA : ≠ 
two-sided test is defined as 

1 1 1  
2 2 2 ( − µ0 ) n x − µ0 ) n x − µ0 )n x ( (

Pr(| |> z1−α | HA is true) = Pr( > z1−α or < z H  α | A is true) 
2 2 2σ σ σ 

This simplifies to 
1 1 
n 2 (µ0 − µA ) n 2 (µA − µ0 )power =  Φ −  [ z1−α + ] +  Φ −  z1−[ α + ].

2 σ 2 σ 

The corresponding sample size formula is 

2 
n = σ (z1−α + z1−β )

2.2 2Δ 

where Δ =| µA − µ0 | . 

Example 3.2 (continued) Analysis of MEG Sensor Bias. If Steve wanted to worry about both 
positive and negative drift, then the previous sample size calculation becomes with 
z = z = 1.96, 1−α /  2  0.975  

http:6.32(0.05
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2 2(1.1) (1.96 + 0.84) n = 
(0.1) 2 

1.21(2.8) 2	 1.21(7.84)=	 = 
0.01 0.01 

= 949. 

Remark 12.5. Notice that (z0.975 + z0.8 )
2 ≈ 8.  Hence, 

8 n ≈ 
SNR 

Remark 12.6. In Homework Assignment 9 we will explore a similar formula for the binomial 
distribution. 

C. Adjustments for the Gaussian Assumptions 
1. One-Sample t-Test for Unknown σ 2. The z − test allows us to test hypotheses about the 
mean of a Gaussian distribution under the assumption that the variance is known. The t- test 
allows us to test the same hypotheses when the sample size is not large and the variance is 
unknown and must be estimated from the sample. The t- test was developed by Gossett in 1908 
while he was working in the Guinness Brewery. Gossett wrote under the pseudonym of Student. 
For this reason it is still referred to as Student’s t-test. The distribution was worked out later by 
R.A. Fisher. 

Suppose x1,..., x is a random sample from a Gaussian probability model N( ,  )µ σ 2 and we wish n 
to test the null hypothesis : µ µ against the alternative HA ≠ .H0 = 0	 : µ µ0 

Assume σ 2 is not known and n is not large, say 15 < < 20.n Therefore, as discussed in Lecture 
8, we construct a t- test by estimating σ 2 with an unbiased estimate, and instead of a 
z − statistic we construct a t- statistic as 

1 
2 ( − µ0)n x 

t = 
s 

where 

n 
2 −1 2s = (n −1) 	  ∑ (xi − x ) 

i=1 

t t a	 n −1 degrees of freedom. Recall that we showed in the practice : t-distribution on n−1, 
problems for the second In Class Examination that s2 is an unbiased estimate of σ 2. Given α , 
to test : µ µ against HA : µ µ we reject for H0 = 0	 ≠ 0 H0 

| |t tn 1,1 > − − 2
α

http:1.21(7.84
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or equivalently if either 

s s x > µ + t − −α  or x < µ − t 1,1 α 
2 10 n 1,1  2 1 0 n− −  

2 2n n 

Example 12.1 Reaction Time Measurements. In a learning experiment, along with the correct 
and incorrect responses, we record the reaction times which are the times it takes the animal to 
execute the task. In a previous study, once it had been determined that an animal had learned a 
task, it was found that the average reaction time was 10 seconds. On the 14 trials after the 
animal learned the task by the behavioral criteria, the average reaction time was 8.25 seconds. 
The sample standard deviation was 2.1. Is this animal’s performance different from that 
previously reported? We have 

H0 : µ = 10.0  
HA : µ ≠ 10.0  

1 1 
2 2( − µ)  (14)  (8.25  −10)  (3.74)(  1.75)  n x −t = = = = −2.26 
s (2.1) (2.1) 

Now it follows from the Table of the t-distribution that 13,0.975 Because | |t t13,0.975 wet = 2.16. > 
reject H0. 

2. Binomial Exact Method 
If np (1 − p ) < 5, we cannot use the Gaussian approximation to the binomial to tests hypotheses 0 0 
about the binomial proportion. In this case, we base the test on the exact binomial probabilities. 

We have : ( ,  )  n and we observe k successes, and we take p̂ k . The p-value depends on x B p  = 
n 

whether p pˆ ≤ . If ˆ ≤ , then 0  or p p  ˆ > 0 p p0 

p − value = Pr( ≤ k  successes in n  trials | H0 )
2 
k 

n j n− j= ( )  p (1  − p )∑ j 0 0 
j=0 

If ˆ > then p p ,0 
p − value = Pr(≥ k  successes in n  trials | H0 )

2 
n 

n j n− j= ( )p (1  − p )∑ j 0 0 
j k= 

Example 12.2. A New Learning Experiment. Assume that we execute the learning experiment 

with 20 trials and there is a 1 probability of a correct response by chance. Suppose k = 12 and 
3 

12 3 1 1 p̂ = = . We want to test H : p = against : p ≠ . We see that 0 HA20 5 3 3 
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⎛ ⎞1 2 40 4⎛ ⎞  np (1 − p ) = 20 = = 4 < 50 0 ⎜ ⎟⎜ ⎟  ⎝ ⎠3 3 9 9⎝ ⎠  

1We have 12 and hence ˆ > and we compute the p-value as > p p020 3 

20 j 20− j
20 1 2p ⎛ ⎞ ⎛ ⎞  = Pr( x ≥12) = ∑ ( j )⎜ ⎟ ⎜ ⎟2 ⎝ ⎠ ⎝ ⎠  3 3j=12 

= 0.01286 

or equivalently 
p = 2(0.01286) = 0.02572. 

Therefore, we reject H0 and conclude that the animal is not performing at chance and most 
likely has learned. 

Remark 12.7. An important topic that we have not considered is non-parametric tests. Each of 
the main parametric tests we considered, i.e., the z-test and t-test has a non-parametric analog. 
It is important to use these nonparametric tests when the sample size is small and the Gaussian 
assumption on which most of the tests are based is not valid (Rosner, 2006). 

Remark 12.8. The requirement of the Gaussian assumption for most the standard hypothesis 
testing paradigms is very limiting. For this reason, we have spent more time in the course 
learning about principles of modern statistical analysis such as likelihood methods, the 
bootstrap and other Monte Carlo methods, Bayesian methods and, as we shall see in Lecture 
16, the generalized linear model. 

D. The Relation Among Confidence Intervals, Hypothesis Tests and p- Values 
The three statistics we have considered thus far for two-sided hypothesis tests can be used to 
construct 100 (1 α× − ) confidence intervals. These are 

z- test (Gaussian mean and variance known) 

σ x z ± 1 α 1− 2 
2n 

z- test (Binomial proportion) 

ˆ ± 
2⎡ p̂(1 − p̂) ⎤ 
1 

p z −α1 2 ⎢ ⎥⎣ n ⎦ 

t- test (Gaussian mean and variance unknown) 

s x t α 1± n 1,1 2− −  
2n 
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We can reject H0 with α = 0.05 if the value of the parameter under the null hypothesis is not in 
the 100%(1−α) confidence interval. In this way, a confidence interval provides a hypothesis test. 
A similar construction of a confidence bound can be used to carry out a one-sided test. Most 
importantly, the confidence interval tells us the reasonable range for the parameter that 
can be inferred from the data analysis. Confidence intervals report the analysis results on the 
physical scale on which the problem takes place. The p- value only tells us how likely the 
observed statistic would be under H0. In this way, the hypothesis test simply provides a 
mechanism for making a decision. Confidence intervals are always more informative 
than p-values. Realizing this in the early 80s, the New England Journal of Medicine set out a 
recommendation obliging that all statistical results be reported in terms of confidence intervals. 
This is now the standard for publication of research articles in that journal. Indeed, p- values 
alone mean nothing! 

Example 3.2 (continued) Analysis of MEG Sensor Bias. To illustrate this point, we note that 
in this problem, the 95% confidence interval is 

1.1 0.11 ±1.96 1 
2(500) 

0.11 ± 0.096 

[0.014, 0.206] 

and we reject H0 because 0 is not in the confidence interval. The p- value was < 0.05 which 
essentially tells us nothing about the magnitude of the bias in the sensor. 

Example 2.1 (continued) Behavioral Learning. In this problem, the 95% confidence interval is 

1 2⎛ ⎞  
1 

⎜ ⎟4⎝ ⎠p̂ ±1.96 1
402 

1 
20.55 ±1.96 
6.32 

0.55 ± 0.158 

[0.392, 0.708]. 

Hence, the p- value is > 0.05. We fail to reject the null hypothesis. The confidence interval not 
only makes it clear that the null hypothesis is not rejected, it also shows what the reasonable 
range of uncertainty is for the animal’s propensity to learn. 

Remark 12.9. One of the true values of the hypothesis-testing paradigm is sample size 
calculations. 
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IV. Two-Sample Tests 
A. Two-Sample t − Test 
Example 12.3. Reaction Time Analysis in a Learning Experiment. Suppose we have the 
reaction times on trial 50 of the 9 rats from the treatment group and 13 rats from the control 
group we studied in Homework Assignment 8-9. The mean reaction time for the treatment 
group was 15.5 sec with a standard deviation of 3.25 sec and the mean reaction time for the 
control group was 11.5 sec with a standard deviation of 3.1 sec. What can be said about the 
underlying mean differences in reaction times between the two groups? 

Assume we have 

xi
T : N (µT ,σT 

2 ) i = 1,..., nT 

c 2x j : N (µc ,σc ) j = 1,..., nc 

Take 
H0 : µT = µc 

HA : µT ≠ µc 

We have 

x = 15.5sec T 
s = 3.25sec T 
xc = 11.5sec 
sc = 3.1sec 

Under we have E x − ) = E x ) − ( ) = µ and hence, H0 ( T xc ( T E xc T − µc = 0 

2σTx : N ( ,  )  µT T nT 

2σcx : N ( ,  )  µc c nc 

where nT = 9 and nc = 13. 

Now under the independence assumption of the two samples 

2 2σ σ
( − x ) = Var x ) +Var x ) T cVar xT c ( T ( c = + 

n nT c 

2 2 2Hence, under and the assumption that σ = σ = σ ,H0 T c 
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xT − xc : N(0, σ 2( 1 + 1 )). 
n nT c 

If σ 2 were known, then we would have 

x − x 
1 
T 

1 
c : N (0,1) 

2σ ( + )
1 

n nT c 

and we could base our hypothesis test on this z- statistic. Since σ 2 is unknown, let us consider 
the estimate of σ 2 defined by 

(n −1)  s2 + (n −1)  s2 2 T T c cs = 
n + n − 2T c 

where 

n 
2 −1 T 2 

T 

sT = (nT −1) 	  ∑ (x j − xT ) 
j=1 

nc 
2 −1 c 2sc = (nc −1) 	  ∑ (xi − xc ) . 

i=1 

2 2 2Notice that if we assume that σ = σ = σ then T c 

2 2 2 2 
2 (nT −1 E s  T + nc −1 E s  c nT −1 σ + (nc − )σ 2) ( ) (  ) ( ) (  )  1

( ) =	 = = σ ,E s  
n + n − 2	 n + n − 2T c	 T c 

2	 2and s is an unbiased estimate of σ .  

Given α we can test H0 with the following test statistic  

x − xT ct = 
1 
2

1 1 s( + )
n nT c 

termed the two-sample t-statistic with equal variance with n n  n+ degrees of freedom. = − 2T c
We reject H0 at level α 

>| |t tn,1−α 
2 

Example 12.3 (continued). For this problem we have 
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2 (nT −1)  sT 
2 + (nc −1)  sc 

2 
s = 

n + n − 2T c 

8(3.25) 2 + (12)(3.1) 2 = 
20 

8(10.56) +12(9.61) = 
20 

84.48 +115.32 = 
20 

199.8 = 9.999 
20 

and hence, 

15.5 −11.5 4t = = 1 = 2.92 
1 1  22[10 × ( + )] 

1 (1.88) 
9 13  

From the Table of the t-distribution we have t = 2.086. Since t t we reject H0 and>20,0.975 20,0.975 
conclude that the mean reaction times of the two groups are different. The longer average 
reaction time for the treatment group suggests that learning may be impaired in that group. 

B. Confidence Interval for the True Difference in the Means 
Because our test statistic follows a t-distribution, we can construct a 100%(1−α) confidence 
interval for the true difference in the measure as follows 

1 

⎛ 1 1 ⎞ 2 xT − xc ± tn,1−α 
2 
s ⎜ + ⎟ . n n⎝ T C ⎠ 

Example 12.3 (continued) Reaction Time Analysis in a Behavioral Experiment. If we apply 
this formula to the data from Example 12.3, we obtain with α = 0.05 a 95% confidence interval 
for the true mean difference of 

⎛ 1 1 ⎞ 124 ± 2.086 ×[10 × + ]⎜ ⎟⎝ 9 13 ⎠ 

4 ± 2.086 × (1.37) 

4 ± 2.86 

which is 
[1.14 6.86]. 

The interval does not contain zero as expected based on our hypothesis test. More importantly, 
we see that not only is it unlikely that the true mean difference is 0, but that the difference could 
be as small as 1.14 sec or as large as 6.86 sec. 
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Remark 12.10. If we cannot assume that the variances in the two samples are equal but 
unknown, then we have to devise an alternative t-statistic that takes account of the unknown 
and estimated variances. It can be shown that an appropriate t-statistic in this case is 

x − xT ct = 1 
2 2 2⎛ ⎞s sT c⎜ + ⎟⎜ n n ⎟⎝ T c ⎠ 

where the number of degrees of freedom is 

2 2s sT c 2( + )
n nT cd ' = 

2 22 2⎛ ⎞ ⎛ ⎞s s−1 −1⎜ T ⎟ (n −1)  + ⎜ c ⎟ (n −1)  T c⎜ nT ⎟ ⎜ nc ⎟⎝ ⎠ ⎝ ⎠ 

This statistic is the Satterthwaite approximation to the degrees of freedom for a t-statistic with 
unknown and unequal variance (Rosner, 2006). 

C. Two-Sample Test for Binomial Proportions 
Example 2.1 (continued) Behavioral Learning Experiment. Let us assume that on Day 1, the 
rat had k = 22 correct responses and on Day 2 we had k = 15 correct responses. Day 1 is out 1 2 
of 40 trials and Day 2 is out of 20 trials. What can we say about the difference in performance 
between the two days? 

We could treat the results from Day 1 as “truth” and compare Day 2 to Day 1. A more 
appropriate way to proceed is to treat the data from both days as if they were observed with 
uncertainty. For this we assume 

1 B n  ( ,  )  j =1 . .,nx j : p , .1 1  1  
2 B n  p  , . nx j : ( ,  )  j =1 . ., .  2 2  2  

Take 

H0 : p1 = p2 

HA : p1 ≠ p2 

Our test statistic can be derived from the estimates of p1 and p2 

k 
p̂1 = 1 

n1 

p̂ = 
k2 

2 n2 
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Under H0 and using the Gaussian approximation to the binomial 

p(1 − p)p̂1 ≈ N p  ( ,  )
n1 

p(1 − p)p̂2 ≈ ( ,N p  )
n1 

and if we assume the samples are independent we have the approximate z- statistic 

( p̂ − p̂ )z = 1 2 ≈ N (0,1) 
⎛ 1 1 ⎞ 1 

2p̂ p̂ ⎜ + ⎟][ (1  − ) 
n n⎝ 1 2 ⎠ 

where, since p is unknown, we estimate it as p̂ defined as 

ˆ p̂  k k  ˆ n p n1 1 + 2 2  1 + 2p = = 
n n+ n n+1 2 1 2 

Hence, given a level α we have the approximate z- statistic is 

| p̂1 − p̂2 |z = 
⎛ 1 1 ⎞ 1 

2[ (p̂ 1− p̂)⎜ + ⎟]n n⎝ 1 2 ⎠ 

We reject H0 : if z z1−α and the approximate p- value is p =  −Φ  ( )]. > 2[1 z 
2 

An alternative form of z that includes the continuity correction (Lecture 8) to make the 
Gaussian approximation to the binomial more accurate is defined as 

⎛ 1 1 ⎞
| p̂1 − p̂2 | −⎜ + ⎟2n 2n⎝ 1 2 ⎠z = . 

⎛ 1 1 ⎞ 1
[ (p̂ 1− p̂)⎜ + ⎟]2 n n⎝ 1 2 ⎠ 

Example 2.1 (continued) Behavioral Learning Experiment. For this problem, we have 

k + k 22 +15 37 p̂ = 1 2 = = = 0.6167 
n + n 60 601 2 

1− p̂ = 0.3833  

or 
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| 0.55 − 0.75 | z = 
11 1 ⎞[(0.6167)(0.3833) ⎛ + ]2⎜ ⎟⎝ 40 20 ⎠ 

0.20 0.20 0.20 = = 1 = = 1.50. 
1

[0.23638 ⎜
⎛ 3 

⎟
⎞]2 (0.01773) 2 0.133 

⎝ 40 ⎠ 

Because z −α = z =1.96 we have z > z so we fail to reject the null hypothesis of no 1 2 0.975  0.975 | |  
difference in performance. Here the p- value is 

p = 2[1 −Φ  (1.50)] = 2[0.0668] = 0.1336. 

Similarly, the 95% confidence interval is 

⎛ 1 1 ⎞ 1ˆ ˆ [ (1  p1 − p2 ± z0.975  p̂ − p̂)⎜ + ⎟]2 n n⎝ 1 2 ⎠ 
−0.20 ±1.96(0.133) 
−0.20 ± 0.26 

or 

[-0.46, 0.06]. 

As expected, the 95% confidence interval includes zero which explains why we fail to reject H0. 
The confidence interval suggests that there may be evidence of improved performance on the 
second day relative to the first since most of the interval includes negative values of the 
difference. 

⎛ 1 1 ⎞ ⎛ 1 1 ⎞The value of the continuity correction is ⎜ + ⎟ = ⎜ + ⎟ = 0.0375. This changes z from 
2n  2n  80  40  ⎝ 1 2 ⎠ ⎝ ⎠ 

1.50 to z = 1.4625 and the corrected p-value is 0.1442. 

×Remark 12.11. The two sample binomial data can also be analyzed as a 2 2 contingency table 

Correct Incorrect Total 
Day 1 k1 1 1n k− 

k2 2 2n − k 
n1 

Day 2 n2 
k + k n n  k k− ( + )+ n + n1 2 1 2 1 2 1 2 

×A 2 2 contingency table is a table consisting of two rows cross-classified by two columns. The 
contingency table analysis uses a test statistic based on a chi-squared distribution with one 
degree of freedom and gives the same result as the z- test. This is to be expected since we 
showed in Lecture 4 that the square of a standard Gaussian random variable is a chi-squared 
random variable with one degree of freedom. We will study this in Homework Assignment 9. 

Remark 12.12. Use of the Gaussian approximation to the binomial to construct this z- test is 
valid provided n p  ≥ 5, n p  ≥ 5, n (1 − p ) ≥ 5 and n  (1  − p ) ≥ 5.  This corresponds to the condition 1 1  2 2 1 1 2 2
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that the analysis of the contingency table using a chi-squared statistic is valid if the expected 
number of observations per cell is at least 5. 

Remark 12.13. This problem could easily be analyzed using a Bayesian analysis in which p1 
and p2 had uniform priors. We could then use Algorithm 10.1 to compare the posterior 
densities of p1 and p2. 

Remark 12.14. We can perform a likelihood analysis and compare the overlap in the 
likelihoods. We could alternatively construct 1−α confidence intervals for p1 and p2 separately 
using the likelihood theory and see if they overlap. 

Remark 12.15. All the tests we have discussed here can be derived from the likelihood theory 
we presented by the likelihood ratio procedure. A detailed discussion of this approach is beyond 
the scope of this course. (See DeGroot and Schervish, 2002; Rice, 2007). 

V. Summary 
Hypothesis testing is a key part of classical statistics. It emphasizes procedures based primarily 
on the Gaussian distribution and Gaussian approximations. The hypothesis testing paradigm is 
very useful for prospective planning of studies using sample size formulae. Confidence 
intervals are always more informative than p-values. Confidence intervals report the 
analysis results on the physical scale on which the problem takes place. Many of the classical 
problems in hypothesis testing can now be carried out in a more informative way using more 
modern approaches such as Monte Carlo methods, bootstrapping, and Bayesian methods. 
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