
  
   

 
     

 
 

            
 

        
 

 
                

          
 

  
         

 
           

    
        

          
        

                
              

              
          

 
   
 

   

 
         

 
          

              
 

9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 14: Analysis of Variance 

I. Objectives 
Understand analysis of variance as a special case of the linear model.

Understand the one-way and two-way ANOVA models. 

II. Analysis of Variance 
The analysis of variance is a central part of modern statistical theory for linear models and 
experimental design. It represents another important contribution of Fisher to statistical theory. 

A. Motivation 
To motivate the analysis of variance framework, we consider the following example. 

Example 16.1 Age and Drug-Related Effects on Cognitive Performance. A new drug 
designed to enhance cognitive performance is ready for testing in animals. Suppose we have a 
group of young and a group of old rats for the test sets. Each group contains 12 animals and 
each group is divided into three subgroups, A, B and C. For each group, subgroup A is a control 
group, Subgroup B receives dose level one of the new drug and subgroup C receives dose level 
two. Dose level two is twice the dose of dose level one in mg/kg. The average execution time in 
minutes of a previously well-learned binary choice task for each animal in each group is 
measured over 3 repetitions. The results from the experiment are reported in Table 16.1. Is 
there a dose dependent effect of the drug on performance? Is the performance effect different 
for different age groups? 

Drug Level 

Control Dose One Dose Two 

Young 56,62,57,72 64,34,64,41 33,37,40,16 
Age 

Old 62,72,61,91 64,48,34,63 17,21,49,54 

Table 16.1 Execution Times of Age and Drug-Related Effects on Performance 

A boxplot of the data by drug level is shown in Fig. 16.1. There does seem to be an apparent 
increase in performance (decrease in execution time) as a function of drug level. 



     

 
 

            
 

    
             

       
              
     

           
             

                
  

 
     
          

     
 
    
 

                   
 
    
 
         
  
       

  
 

              
     

 

page 2: 9.07 Lecture 16: Analysis of Variance

Figure 16.1. Box plots of the performance data by drug dose level. 

B. Analysis of Variance Model 
To formulate a statistical framework for Example 16.1, we first assume that there is no age 
effect. We can then view the problem as a special case of the simple regression model in which 
the regressor or covariate has three levels: control, dose level one and dose level two. We then 
ask, can the variance in the performance data be explained by taking account of drug level in 
the analysis? This is an analysis of variance (ANOVA). In the regression problem, we studied 
how the variance in the data could be explained by the regressors and we summarized the 
results in an ANOVA table. Now, in ANOVA, we consider the case in which the regressors have 
discrete levels. 

C. One-Way Analysis of Variance 
We consider data yij divided into i = 1,..., I groups and having j =1,..., J subjects per group. We i 
model the data as 

y µ a e , (16.1) = +  +  ij i ij 

ithwhere µ is the mean level, ai is the effect of the level and eij is random error. We assume 

i) [ ij i µ ai.E y  |  effect  ]  = +  

ii) The effect levels are fixed and unknown. 

iii) The eij are independent Gaussian random variables with mean zero and variance 

s . 

The model in Eq. 16.1 is termed the one-way ANOVA model. To develop a regression 
formulation of the one-way ANOVA model, let 

2 
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bi µ ai (16.2)= +  

and take 

YT = (y11, y12,..., y1J ; y21, y22,..., y2J ,..., yI1, yI 2,..., yIJ ) (16.3)
1 2 I 

and define 

X X X ... X1 2 3 I 

1 0 0 ... 0 
1 0 0 ... 0 
... ... ... ... ... 
1 0 0 ... 0 
- - - - - - - - - -
0 1 0 ... 0 
0 1 0 ... 0 

(16.4) ... ... ... ... ...  
0 1 0 ... 0 
- - - - - - - - - -
... ... ... ... ... 
- - - - - - - - - -
0 0 0 ... 1 
0 0 0 ... 1 
... ... ... ... ... 
0 0 0 ... 1 

X = 

b ' ( ,b . . b , where is a 1 if the subject is in group i and 0 otherwise, for i = 1,..., . We= . , ) I1 I Xi 
obtain as in the case of multiple regression, the linear model 

+ (16.5)Y = X b e  

where 

eT = ( ,e ,...,e ;e ,e ,...,e ;,,,;e ,e ,...,e11 12 1J 21 22 2J I1 I 2 eIJ ). (16.6)
1 2 I 

Proceeding as in the case of the regression models, it follows that the likelihood is 
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I 
I J I JIå 11 i	 2L(b | Y ) = ( ) i 1 exp{ - åå (Yij - bi ) } (16.7) 

2ps 2 
= 

2s 2 i=1 j=1 

and the log likelihood is 

I	 I Ji 
2 1	 2log L(b | Y ) = -I å Ji log(2 ps  ) - 2 åå  (Yij - bi )

2si=1	 i=1 j=1 (16.8) 
I	 

2 1 T= -I J log(2 ps ) - 2 (Y - X b ) ( Y - X b ). iå 2si=1 

If we differentiate the log likelihood with respect to b , and set the derivative equal to zero, we 
obtain the normal equations 

TT )(X X b = X Y 	  (16.9) 

where 

é J Y ù 
éJ ù ê 1 1 

ú1 J Yê ú ê 2 1 ú
T ) ê J2 ú T(X X = X Y  = ê ú	 (16.10) 

ê ú ê ú 
ê ú ê úJë I û ê úJ Yë I I û 

T	 ith -1The inverse of X X is simply the diagonal matrix with diagonal element Ji . It follows that 
the maximum likelihood estimates of the bi are 

Ji 
-1bi = Yi = Ji	 åYij (16.11) 
j=1 

for i = 1,..., I and that upon differentiating with respect to s 2 we obtain, just as in the case of the 
multiple regression model, 

I 
2 -1 ˆ T ˆŝML = (I å J ) (Y - X b ) (  Y - X b )i 

j=1 (16.12) 
I I Ji 

-1 2= (I å Ji ) åå  (Yij - b̂i ) . 
j=1 i=1 j=1 

Again, we will use an unbiased estimate of the residual mean-squared error instead of the 
maximum likelihood estimate in Eq. 16.12. The Pythagorean relation for the One-Way Analysis 
of Variance model expressed in the ANOVA table is 
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Source Sum of Squares Degrees of Freedom Mean Square 
I 

Between Groups å ( -Y )2 I -1 2J Y 	  MS  i i  B  
i=1 

I J I 
2	 2Within Groups	 åå (Yij -Yi ) å (Ji -1) = n - I  MS  w 

i=1 j=1 i=1 

2Mean nY	 1 

I J I 
Total ååYij 

2 å Ji = n 
i=1 j=1 i=1 

I I 
-1where = ( Ji ) å J Yi  i  . Notice that the Total Sum of Squares about the mean Y	 å  

i=1 i=1  
I J 

2 2TSS = ååYij - nY . 
i=1 j=1 

Remark 16.1. The F - statistic to test the null hypothesis H0 : b1 = b2 = ...  = bI = 0 is 

2 
BF = 

MS 
2 

(16.13) 
MSw 

which we compare with the 1 d quantile of the F distribution on I -1 and n I degrees of 
freedom. 

Remark 16.2. The between groups sum of squares is the analog of the explained or regression 
sum of squares and the within groups sum of squares is the analog of the residual or error sum 
of squares for the simple and multiple regression problems. Notice that first three rows in 
ANOVA table are orthogonal. 

Remark 16.3. If we return to the original model 

E y 	  bi (16.14) [ ]ij	 = +  =  µ ai 

it follows that 

Y Y	 (16.15) â = - .i i



     

            
              

     
 
 

            
                

             
             

 
 

   

 
           
                

 
     
                

         
     

                
             

 
    
 

                 

                  

     
         

            
  

 

        

 
 

                  
 

 
 

page 6: 9.07 Lecture 16: Analysis of Variance

That is, the âi 's are estimates of the deviances of the group means from the overall mean.
Hence, we see that H : b = b = ...  = b = 0 is equivalent to the statement that the data are0 1 2 I 
simply explained by the overall mean. 

Example 16.1 (continued). To apply the one-way ANOVA model to this problem, we collapse 
Table 16.1 into 3 groups according to drug level. Hence, I = 3 and Ji = 8, for i = 1,2,3. We are 
interested first in the null hypothesis H : b = b = b = 0,  which means there is no difference in 0 1 2 3 
cognitive performance between the different dose levels of the drug. The ANOVA table is 

Source SS DF MS F -value p 
Between Groups 4, 434.25 2 2, 217.13 12.52 0.0003 
Within Groups 3,717.75 21 177.04 

Mean 61, 206.00 1 
Total 69,358.00 24 

Again note that the TSS = 8,152 = 69,358.00 - 61, 206.00 and that it has 23 degrees of freedom. 
Based on this analysis, we conclude that the drug does have an effect on performance. 

D. Two-Way Analysis of Variance 
To assess the effect of both age and drug level on performance, we require a two-way 
analysis of variance model. A two-way analysis of variance model allows us to assess the 
extent two which two factors may be used to describe variance in a response or independent 
variable. If we have a two-way classification with I rows and J columns, with K observations 
Yijk , k =1,...,  K in each cell, then the usual two-way fixed-effects analysis of variance model is 

Yijk = + +  + +  µ ai b j g ij eijk (16.16) 

ithfor i = 1,..., I , j =1,..., J , k =1,..., K, where µ is the mean effect, ai is the row effect, b j is the 

j th ith j thcolumn effect and g ij is the interaction between the row and the column effect and 

eijk are independent zero mean Gaussian random variables with mean zero and variance s 2. 
In Example 16.4 I = 2 age groups J = 3 drug dose levels, there are six interaction terms and 
K = 8 in each cell (Table 16.1). We require an additional assumption to make the model 
parameters estimable namely, 

I J I J 
a = b = g (for all ) j = g (for all ) i = 0. (16.17) å å  å  i  j ij  å ij  

i=1 j=1 i=1 j=1 

By carrying out an analysis similar to the one for the One-Way ANOVA it is possible to show 
that the ANOVA table for this model is 

http:69,358.00
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Source Sum of Squares Degrees of Freedom Mean Square 
I 

Rows JK å (Yi.. -Y )2 I -1 MS R 
2 

i=1 

J 
2	 2Columns IK å (Y. .j -Y ) J -1 MSc 

j=1 

I J 
2	 2Interaction	 K åå (Yij . -Yi.. -Y j + Y ) (I -1)( J -1) MS  . . RC 

i=1 j=1 

Residual by subtraction IJ K -1) 2(	 s 

2Mean IJK Y	 1 

I J K 
2Total	 åååYijk IJK   

i=1 j=1 k =1  

where 
J K  

-1  th  Yi.. = (JK  )	 ååYijk  , i  row mean 
j=1 k =1 

I K 
thY. .j = (IK  )ååYijk  , j  column mean 

i=1 k =1 (16.18) 
K 

-1  th  Yij. = (K ) åYijk , i  cell mean 
k =1 
I J K 

-1Y = (IJK  )	 åååYijk ,  overall mean 
i=1 j=1 k =1 

The standard null hypotheses and F - tests are 

: all a = 0 F = MS  2 / s2 compared with F[( I -1), IJ  K  -1)] H0 i R	 ( 

H c 
2 2	 IJ  K  0 : all b j = 0 F = MS  / s compared with F[( J -1), ( -1)] (16.19) 

2 2	 IJ  K  -1)] H0 : all g ij = 0 F = MS  Rc / s compared with F[( I -1)( J -1), ( 

Example 16.1 (continued). The partially completed two-way ANOVA table for this problem is
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Source Sum of Squares Degrees of Freedom 

Rows 150.00 1 

Columns 4,434.25 2 

Interactions 72.75 2 

Residual 3,495.00 18 

Mean 61,206.00 1 
Total 69,358.00 24 

One of the problems in Homework Assignment 10 is to complete this ANOVA table and 
determine if there is an effect on performance of age, of drug does level and if there is an 
interaction between age and drug dose level. 

Remark 16.4. We can conduct an analysis of the residuals for this ANOVA model (See Draper 
and Smith, 1981). 

Remark 16.5. The row, column, interaction effects and the residuals are all orthogonal. The 
effects are assumed to be fixed. Another formulation of the ANOVA models views either the 
column or row effects as random variables. In this case, we have random effects or mixed 
effects ANOVA models. 

Remark 12.6. If we have a model in which there is a mixture of discrete and continuous 
explanatory variables, then the analysis of variance becomes the analysis of covariance. It is 
essentially the combination of the regression and ANOVA models. Similarly, when there are 
missing observations in an ANOVA table, the regression formulation is key. In these cases, the 
orthogonality is often lost. 

Remark 16.7. If we have independent identically distributed Gaussian errors and the mean of 
each yi is a nonlinear function of the corresponding xi such as 

yi = g( ,  )  b xi + ei (16.20) 

then we still have a Gaussian likelihood b . However, to estimate the parameter requires a 
nonlinear optimization routine to maximize the likelihood. Notice that in the case of the fMRI 
model we have 

= (16.21) Y X ( )q b  e  + 

where q = ( , , )  a t d  and a is the exponent in the gamma function, t is the time-constant for the 
decline of the hemodynamic response and d is the delay. Here, we can split the maximization 

http:69,358.00
http:61,206.00
http:3,495.00
http:4,434.25
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of the likelihood into linear steps and nonlinear steps. That is, if the Newton’s procedure for 
maximizing the likelihood gives at iteration k 

( )  (k- 2 (k 1)  -1 (k 1)  - k-1)  q = q -Ñ log L '(q ) Ñ log L '(q ),	 (16.22) 

then the corresponding estimate of b at iteration k is 

ˆ ( )  T ( )  k T ( )k k ( )  kq ] q ) . 	  (16.23) b = [X (  ) (  X q ) X ( Y 

where log L '( )q is the concentrated log likelihood, i.e. the log likelihood written in terms of q after 
solving for or “concentrating out” b . We did this for our maximum likelihood analysis of the 
gamma distribution in Lecture 9. Every time we estimate s 2 by maximum likelihood for a 
Gaussian model we first solve for the estimate of the mean (Lecture 9) or the regression 
parameters (Lectures 14 and 15). This approach is not only computationally efficient, but also 
as k ®¥  for the Newton’s iteration 

( )k ( )  ˆq ®q ¥ = qML	 (16.24) 

and 
T -1 Tb̂ = [X (q̂ )X (q )]  X (q̂ )Y.	 (16.25) ML ML ML ML 

Remark 16.8. As we will see in Lecture 17, an important generalization of the linear regression 
models, we have studied here is the generalized linear model (GLM). This will allow us to 
have dependent variables ( 's) in our regression models that are non-Gaussian and the 
computations can be carried out as iteratively reweighted least squares. Under this procedure, 
these models will be estimated by maximum likelihood. 

yi 

Remark 16.9. The approach we have taken of viewing the simple linear regression, the multiple 
linear regression and the ANOVA models in a similar framework is termed the general linear 
model. It is important to appreciate the difference between this and the generalized linear 
model we will discuss in Lecture 11. It is also important to realize that the so-called general 
linear model and the Statistical Parametric Map (SPM) used by Carl Friston and colleagues at 
University College to analyze fMRI data is just a multiple linear regression model. 

Remark 16.10. The time domain time-series methods we will derive in Lecture 18, will follow 
directly from writing down a linear regression model of the form 

p 
x = a + a x + e .t 0	 å j t- j t (16.26) 

j=1 

This is an autoregression model of order p. The xt 's appear on both the left and right sides of 
the equation. Hence, they are no longer fixed constants. 

Remark 16.11. A key problem in functional neuroimaging data analysis is that of multiple 
hypothesis tests. It comes about because every voxel is analyzed independently. The major 
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problem with multiple hypothesis tests is that there is a non-trivial finite probability of rejecting 
the null hypothesis. Various correction approaches such as Bonferroni corrections and false 
discovery rate are used. 

III. Summary 
We have shown that the simple linear regression, the multiple linear regression and the ANOVA 
models can all be derived in a unified likelihood framework. Most importantly, it provides a way 
of thinking about stimulus response experiments, which as we point out in the Introductory 
Lecture, is a central paradigm in neuroscience. The linear model framework is the crucial 
stepping stone to the advanced methods we will develop in the balance of the course. 
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