
       
   

 
       

   
 

 
 

           
 

 
             

 
             

  
 
 

 
             

      
       

 
 

    
        

     
 

    

 
          

            
 

    

 
    

 
    
 
 

               
        

 
 
 

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 5: Conditional Distributions and Functions of Jointly Distributed  
Random Variables  

I. Objectives 

Understand the concept of a conditional distribution in the discrete and 
continuous cases. 

Understand how to derive the distribution of the sum of two random variables. 

Understand how to compute the distribution for the transformation of two or more 
random variables. 

II. Conditional Distributions 
Just as we used conditional probabilities in Lecture 1 to evaluate the likelihood of one event 
given another, we develop here the concepts of discrete and continuous conditional distributions 
and discrete and continuous conditional probability mass functions and probability density 
functions to evaluate the behavior of one random variable given knowledge of another. 

A. Discrete Conditional Distributions 
If X and Y are jointly distributed discrete random variables, the conditional probability that 
X = xi Y y j isgiven = 

Pr( X = xi ,Y = y j )Pr( X = xi | Y = y j ) = 
Pr( Y = y j ) (5.1) 

xy ( ,i y j )p x 
= 

p y( )y j

provided that p y( ) 0> given Y y .. This is the conditional probability mass function of X =y j j 
The numerator is a function of x for a fixed value of y. Similarly, we have 

( ,  )  xy i j Pr( = j | = i ) 
p  x y  

Y y X x  = (5.2) 
( )p xx i  

We also have 

p x( , = ( ( = ( ( . (5.3) xy i y j ) px xi )py|x yi | xi ) py y j )px y | xi | y j )

Example 5.1 Melencolia I. The following discrete joint probability mass function is based on a 
magical square in Albert Dϋrer’s engraving Melencolia I. 
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Y 
1 2 3 4 

X 
16 3 2 131 136 136 136 136 (5.4) 
5  10  11 82 136 136 136 136 
9 6 7 123 136 136 136 136 
4 15 14 14 136 136 136 136 

Find Pr(Y =1| X = 3) and Pr(X = 4 | Y = 2) 

Pr( Y = 1I X = 3) Pr( Y = 1| X = 3) = 
Pr( X = 3) 
Pr(Y = 1I X = 3) = 4 

∑Pr(Y = yi I X = 3) 
i=1 
9 1 9= / (9 + 6 + 7 +12) = 
136 136 34 (5.5) 
Pr(X = 4 I Y = 2)Pr( X = 4 | Y = 2) = 4 
∑ Pr(X = xi I Y = 2) 
i=1 
15 1 = / (3 +10 + 6 +15) 
136 136 
15 = 
34 

Example 5.2 Suppose that each acetylcholine molecule released at the neuromuscular junction 
of a frog has a probability p of being defective. If the distribution of the number of molecules 
released in a 10 msec time interval is a Poisson distribution with parameter λ, what is the 
distribution of the number of defective acetylcholine molecules? 

Let N be the number of acetylcholine molecules released in 10 msec and let X be the number 
that is defective. If we assume that one molecule being defective is independent of any other 
being defective, we have that the conditional pmf of X given N n is the binomial distribution = 

n⎛ ⎞ k n−kPr( X k | N n  ) = ⎜ ⎟ p (1 − p) (5.6) = = 
k⎝ ⎠  

And we have that 
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n −λλ e = . (5.7) 
n!

Pr( N n) = 

By the Law of Total Probability (Lecture 1), we have 

∞ 
Pr( = ) = ∑Pr( = ) Pr( = | = )X k  N n  x k N n  

n=0 
∞ n −λλ e ⎛ ⎞n k −n k  = ∑ ⎜ ⎟ p (1− p)n! k⎝ ⎠=n k  
∞ n −λλ e n! k  n k  −= ∑ p (1− p) 
n k  n! k n  k  !(  − )!= (5.8) 

k ∞ λn−k n k  (λ p)  (1− p) − 
−λ= e ∑! n k ( − )!  k n k  = 

k(λ p) −λ λ(1− p)= e e
k ! 

(λ p)k −λ p= e
k ! 

which is a Poisson model with rate parameter λ p. 

B. Continuous Conditional Distribution 
If X and Y are continuous random variables with joint probability density fxy ( ,  )x y  , then the 
conditional probability density of Y given X is defined as 

fxy ( ,  )  
f y x| ( | )  

x y  
(5.9) y x  = 

( )f xx 

for 0  ( )  < ∞ and 0 otherwise. If we define this in terms of differentials we have < f xx 

Pr(y < Y ≤ y + dy I x ≤ X ≤ x + dx)Pr(y < Y ≤ y + dy | x ≤ X ≤ x + dx) = 
Pr(x ≤ X ≤ x + dx) 

fxy ( ,  )  x y dxdy 
= 

f ( )x x dx 

fxy ( ,  )  x y dy 
= . 

( )f xx 
(5.10) 

Hence, we have 
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(Pr( y Y ≤ y + dy  | x ≤ X ≤ x + dx)
| ( | x) =

<f y x y lim 
dy→∞ dy 
fxy ( ,x y) = 
f x( )x 

The numerator is a function of y for a fixed value of x. Similarly, we can define 

fxy ( ,x y)f x = x y| ( | y)
y ( )f y (5.11) 

fxy ( ,x y) = f y|x (y | x) fx (x) 

and the marginal probability density of Y is 

f y( ) = (y | x) f (x)dx (5.12) Y ∫ f y|x x

which is the Law of Total Probability for continuous random variables. 

Example 4.6 (continued). Figure 4H shows the joint probability density of the two MEG 
sensors. Consider the distribution of the front sensor (y-axis) given that the value of the back 
sensor (x-axis) is 0.25. If the bivariate Gaussian probability density is a reasonable model for 
these data, then we can show that the conditional distribution of Y given X is the Gaussian 
probability density defined as 

⎧ σ y ⎫ 
⎪ [ y − µy − ρ ( x − µx )]

2 
⎪ 

2 2 ⎪ 1 σ x ⎪f | ( |  x) = [2πσ y (1  − ρ )]−
1
2 ×exp  ⎨− (5.13) Y X  y ⎬ 

⎪ 2 σ y
2 (1 − ρ2 ) ⎪ 

⎪ ⎪⎩ ⎭ 

We have 

σ yE Y( | X ) = µy + ρ (x − µx )σ x 
(5.14) 

Var( |Y X ) = σ 2 (1− ρ2 ).y 

Note that if ρ = 0, we have the marginal density of Y is the Gaussian density with E Y( ) = µy and 

Var( ) = σ 2 X and Y would be independent. Notice also that Y y , consistent with the idea that 
2 2 2σ y (1 − ρ ) ≤σ y showing that knowledge about X reduces the uncertainty in Y . 
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σ yThe conditional mean µy x| = µy + ρ (x − µx ) is called the regression line of y on x. It gives the 
σ x 

“best” prediction of y given x. When we study regression analysis we will make this statement 
precise. 

Example 4.5 (continued). In this example we have the joint and marginal densities as 

2 −λ yf x  ) e 0 ≤ x ≤ yxy ( , y = λ 

f x = λe−λ x (5.15) ( ) 0 ≤ xx

f y = λ2 y −λ y 0 ≤ yy ( ) e

The conditional densities are 

f x y λ2e−λ y( ,  )  xy −λ( y x)f y x| y x) = = = λe (5.16) ( | − 
( )  −λ xf xx λe

x y andfor 0 < < < ∞, 

λ2 −λ yef x = −1 (5.17) | ( | y) = yx y
λ2 ye−λ y 

for 0 < x y That is, X is unifo rmly distributed on (0, y]. ≤ . 

Note that 

fxy ( ,x y) = f y|x (y | x) fx (x) = fx y | (x | y) f y (y). (5.18) 

We can simulate data from this joint probability density by either one of the following two 
algorithms. 

Algorithm 5.1 

Draw X from the e xponential density f x .1) ( )x
2) Draw Y from the e xponential density f | ( | x) on the interval [ ,x ∞).y x  y 

Algorithm 5.2 
1) Draw Y from the ga mma density f y .y ( )
2) Draw X from the u niform density on the interval [0,Y ]. 



 

              
             

 
 

          
             

     
               

    
          
      

        
 
               

           
        

          
     

 

    

 
 

         
 

    

 
 

        
 
 

    

 
 

               
 

 

    

             

page 6: Lecture 5: Conditional Distributions and Functions of Jointly Distributed Random Variables 

We will show later in this lecture that Algorithm 5.2 states that conditional on (or given that) the 
sum of two exponential random variables which is a gamma random variable, the distribution of 
the first random variable is uniform. 

Example 5.3 Dendritic Dynamics (Lee et al., PLoSB 4(2):e29 (2006)). To study the neuronal 
remodeling that occurs in the brain on a day-to-day basis, Elly Nedivi and colleagues used a 
multiphoton-based microscopy system for chronic in vivo imaging and reconstruction of entire 
neurons in the superficial layers of the rodent cerebral cortex. Over a period of months, they 
observed neurons extending and retracting existing branches, and in rare cases, budding new 
tips. Thirty-five of 259 non-pyramidal interneuron dendritic tips showed rearrangement and 0 of 
124 pyramidal cell dendritic tips showed rearrangement. The objective is to analyze the 
probability of rearrangement for the two types of neurons. 

Assume the propensity to change is a probability pi ∈(0,1), where i = 1 is the interneuron 
propensity and i = 2 is the pyramidal neuron propensity. We will perform Bayesian analysis of 
this problem. Assume that pi has a beta distribution with parameters α and β . This will 
represent our knowledge of pi prior to the experiment and is called a prior distribution. Given pi 
and Xi : Binomial ( ni , pi ) we have 

⎛ ⎞ni x 1−xifx p xi p p ( − i ) (5.19) | ( | i ) = ⎜ ⎟ i i 1 p
i i ⎝ ⎠xi 

for x n and f pi is the beta density i = 0,1,..., i ( )

+ )Γ(α β α−1 β−1f p = p ( − p ) . (5.20) ( ) 1i Γ Γ( )  i i( )α β

Let’s compute ( ) ( | )f x  and f p  x . The joint distribution is the product of the pmf of a discrete i i i 
random variable xi and a continuous random variable pi and is defined as 

f x( , p ) = f ( p ) f x | p )i i i ( i i

n+ ) ⎛ ⎞  xΓ(α β α−1 β −1 i x n −i i i= pi (1 − pi ) ⎜ ⎟ pi (1 − pi ) (5.21) 
Γ Γ( ) (  )  ⎝ ⎠α β xi 

+ ( i + ) + xΓ(α β ) Γ n 1 α i− i+βi−xi−1= p 1(1 − p )n 
Γ Γα  β( )  Γ( xi 1 (ni − i +1)  i i( ) + )Γ x 

using the fact that if xi is an integer Γ( ) x )! by Factoid 1 from the Addendum to Lecture xi = ( i −1
3 

n⎛ ⎞ n ! Γ n +1)  i (
⎜ ⎟ = i = i (5.22) 
xi x n − xi )! Γ(x +1)Γ(n − x!( +1) ⎝ ⎠ i i i i i



 

 
 
  

     
 

    

 
       

 
 

    

 
 

  
 

    

 
 

               
               

          
 

    

   
 

              
      

 

    

 
 
 

               
       

page 7: Lecture 5: Conditional Distributions and Functions of Jointly Distributed Random Variables 

To compute ( )f x  we consider i

1 
f (xi ) = ∫ f (xi , pi )dpi . (5.23) 

0 

From Lecture 3 and the Addendum to Lecture 3, we know that 

1 α+xi −1 n +β −x 1 Γ(α + xi )Γ(ni + β − xi )i i∫ pi (1 − pi ) i − dp  i = (5.24) 
0 Γ(α β + ni )+ 

Hence, 

Γ(α β Γ(ni +1) Γ α + xi ) (n β − xi+ ) ( Γ i + )
f x = (5.25) ( )i Γ Γ( ) ( ) Γ(xi +1 Γ(ni − x ) Γ( + β + niα β ) i +1 α ) 

= 0,1,2,..., If we take f pi to be the beta probability density with α β 1, then we have 
the uniform probability density on [0,1] . This means we are indifferent among all the values of p 
in [0,1] prior to the start of the experiment and f xi simplifies to 

for xi ni . ( ) = =

( )

1f x( ) .  (5.26) i = 
ni +1 

Verify this. 

For the Bayesian analysis we will be interested in f p x , the most likely values of pi given ( | )i i
the data xi for i = 1,2. It is 

f pi ix( , )  ( | )  x =f pi i ( )f xi 

Γ(α β )Γ(n ) 1 n β − −+ i +1 α+ x − x 1i i ip (1− p ) + 
Γ Γ( )Γ(x +1 Γ(n − xi +1)

i( )α β ) i 
= i i (5.27) 

Γ(α β )Γ(ni +1 Γ α + xi )Γ( i + β − xi+ ) ( n ) 
Γ Γ( ) ( )Γ(xi +1 Γ(ni − x )Γ α + β + niα β ) i +1 ( ) 

Γ(α β + ni α+ x −1 n +β x 1+ ) − −= p i (1− p ) i i 

Γ(α + xi )Γ(ni + β − xi )
i i 

which is a beta probability density with parameters α + xi and n + β − x . We have now laid the i i 
ground work for an analysis we will be performing on these data in a few weeks. 



 

 
 

 
            

    
 

    

 
               

 
 
 

      
 

   
 

             
    

 

    

    
 

    

 
         

 
           

     
               

       
 

           

    

 

page 8: Lecture 5: Conditional Distributions and Functions of Jointly Distributed Random Variables 

III. Functions of Jointly Distributed Random Variables 
The two functions of jointly distributed random variables X and Y that are most commonly 
considered are the sum and quotient 

Z X + Y= 
(5.28) 

YZ = .
X 

We will consider only the sum. The quotient is discussed in Rice, pp. 98-99. 

A. Sum of Two Random Variables 

1. Discrete Random Variables 

If X and Y are discrete random variables with joint pmf p X Y ) then Z = X + Y is the set of all 
events Z z = , Y = z − x Hence, 

( ,
= , X x . 

∑
∞ 
pp z( ) = (x, z − x) (5.29) z

x=−∞ 
+or if X Y are independent 

∞ 
p z( ) = ∑ p (x)p (z − x). (5.30) z x y

x=−∞ 

The sum is called the convolution of px and py. 

Example 5.4. Suppose that the number of channel openings at two distant (independent) sites 
along the frog neuromuscular junction in a 500 msec interval are Poisson random variables with 
parameters λ1 and λ2. What is the probability mass function of the total number of channel 
openings in a 500 msec interval at the two sites? 

We have : λ1 : λ2 and let Z X + Y We want to consider the X P( ),  Y P( ) = event 
n 

{Z = X + Y = n} = U{X = k I Y = n − k}.  Hence, we have 
k =0 
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+ = ∑
n 

Pr(X Y n) = Pr(X = k I Y = n − k) 
k=0 
n 

=∑ = ) Pr(Y = n − kPr(X k ) 
k=0 
n −λ1 k −λ2 n−ke λ e λ1 2=∑ k ! (n − k)!  k=0 (5.31) 

n k n−k 
−(λ λ ) 1 21 2= e + ∑ λ λ

k=0 k n − )! !( k

( 1 + 2 ) n− λ λe n! k n−k= λ λ
n! ∑ k !(n − k)!  1 2  

k=0 

(λ λ )n − 1 + )= 1 + 2 e (λ λ2 . 
n! 

We see that the sum of two independent Poisson random variables is again Poisson with 
J J 

parameters λ λ . In general, if Z = ∑ X j where X P( ) then Z P(∑λ j . We will be able 1 + 2 j : λ j : ) 
j=1 j=1 

to establish this latter result rigorously once we develop the concept of the moment generating 
function in Lecture 6. 

Z=X+Y  

Figure 5.A. Set of X and Y values considered in the computation of a convolution of X+Y. 

2. Continuous Random Variables 
+ Y ≤ z yNow we consider in the continuous case Z = X which is the region below the line x + = z. 

Thus, if the joint pdf of X and Y is f x ) we have ( , y
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( ) Pr( )zF z  X  Y  z= + ≤ 

= ∫ ∫  f X( ,Y )dxdy
Rz 

∞ −z x  
= ∫ ∫  f x( , y)dydx −∞ −∞ 

(5.32) 

Let y v x, y z= − x v y= + x = z − x + x = z= − then dy = dv and implies 

∫ ∫
∞ z 

= f x( ,v− x)dvdx. 
−∞ −∞ 

If ( ,  )f x v  x dx  
∞ 

−∞ 
−∫ is continuous at z, then on differentiating, we have 

( )  ( ,  )zf z  f x z x dx  
∞ 

−∞ 
= −∫ 

(5.33) 

(5.34) 

and if X and Y are independent we obtain 

( )  ( )  (  )z x yf z  f x f z x dx  
∞ 

−∞ 
= −∫ (5.35) 

which is the convolution of xf and y .f 

X + Y = Z 

Figure 5B. Convolution of Two Uniform Random Variables Yields a Triangular 
Distribution. 

Example 5.5. Suppose X and Y are independent random variables both uniformly distributed 
on (0,1). Find Z = X + Y (Figure 5B). 
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⎧1 0 < <1x
f x =( )x ⎨

⎩ 0 otherwise 
(5.36) 

⎧1 0 < <1y
f y =y ( ) ⎨

⎩ 0 otherwise 

z ∈(0,2). To derive this density we must consider two cases: 
Case i) 0 < z ≤ + ≤ z and1 then x y

z = ∫
1 

∫
z 

f z f (x) f (z − x)d = dx = z (5.37) ( ) x
0 0 

Case ii) 1 z 2 + = such that 1 < < then we must have x (z< < then x y z z 2 ∈ −1,1) and 

1 1 
z ∫ x x  | )f z( ) = d = =1− (z −1 = 2− z (5.38) 

z−1 z−1 

( ) is the triangle probability density. f z

X + Y = Z 

Figure 5C. Convolution of Two Exponential Random Variables Yields a Gamma 
Distribution. 

Example 5.4 (continued). Suppose that the length of time that each of the two ion channels is 
open is an exponential random variable with parameters λ1 for the first and λ2 for the second. 
Because the channels are distant, we assume that they are independent. Find the probability 
density for the sum of the channel opening times if λ = λ = λ (Figure 5C). Let Z = X + Y , then 1 2 
we have 

2 −λx −λy( ,  )  = ( )  ( )  = λ ef x y  f x f y  e  (5.39) x y 

for x > 0 and y > 0 
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∞ z 
z ( ) = ∫ x y ∫ λ2 −λx −λ(z x  − )df z f (x) f (z − x)dx = e e x 

−∞ 0 
(5.40) 

2 z −λz 2 −λz= λ ∫ e  dx = λ ze 
0 

which is the probability density of a gamma random variable with = 2 and = . Note that the α β λ
convolution here, as in the case of the uniform random variables, “smooths” out the probability 
densities and makes values in the middle more likely (Figure. 5C). We saw the start of a similar 
phenomenon with the sum of two uniform random variables in Example 5.5 (Figure 5B) having 
a triangular density. This is a key observation for understanding the Central Limit Theorem in 
Lecture 7. 

B. General Transformations of Two Random Variables 
We state the general case as a Proposition. 

Proposition 5.1. If X and Y ( ,  )are continuous random variables with joint pdf f x y  suppose X 
and Y are mapped onto U and V by the transformation 

u g= 1( ,x y) 
(5.41) 

v g= 2 ( ,x y) 

and the transformation can be inverted to obtain 

x h= 1( ,vu ) 
(5.42) 

y h= 2 ( ,vu ) 

Assume that g1 and g2 have continuous partial derivatives, then the Jacobian is 

⎡ ∂h ∂h ⎤1 1
⎢ ⎥∂u ∂vJ u( ,v) = ⎢ ⎥ 
⎢∂h2 ∂h2 ⎥ 
⎢ ⎥⎣ ∂u ∂v ⎦ 

and the absolute value of its determinant is 

∂ ∂h h 2 ∂h2 ∂h1 1 (5.43) | (J u, ) |v = − 
∂ ∂ u v u v ∂ ∂

then 
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f u v) = fxy (h1 u v) h2( , u v) | (5.44) ( , ( , , u v)) | J( ,uv 

for u g x y = x ) for some ( , ) and 0 elsewhere. = 1( , )  v g2( , y x y

Notice that we used a form of Proposition 5.1 to compute the normalizing constant for the beta 
distribution in the Addendum to Lecture 3. 

Proof (Heuristic): The function g is a one-to-one mapping of a region in the ( ,x y)plane into a 
region in the ( , )plane. It must be the case that the probability for any small region in the ( , )u v x y
plane must be equal to the probability of the corresponding small region in the ( , ) plane that it u v
maps into under g . That is, 

f ( ,u d ( , = ( , d ( ,x y)uv v) u v) fxy x y)

d x( , y)fuv u v) fxy ( ,x y)( , = 
d u v)( ,

f ( ,u v) = ( ,x y) | u v) |  uv fxy J ( ,

f ( ,u v) = ( ( , , 2 u v)) | J ( ,uv fxy h1 u v) h ( , u v) |  

where, by analogy with the univariate change-of-variables in Lecture 4, we define | ( , ) | asJ u v
the absolute value of the determinant of J u v ( ,v) ≥ 0.( , ) to insure that f uuv 

Example 5.6. If X and Y are independent gamma random variables with parameters α and λ 
and β and λ respectively, find the joint pdf of U = X + Y and V = X (X + Y )−1. 

The joint density of X and Y is given by 

λα 
α 1 λx λβ 

β − −λ y− − 1fx y ( ,x y) = x e y e, α βΓ( ) Γ( )  (5.45) 
λ +α β

α−1 β − − ( +1 λ x y)= x y e
Γ Γ( )  ( )α β

= 1( , = x −1 , = 1 u v = 2( , ( .Now we have u g x y) = x+ y , v g2( , y) = x(x + y) x h ( ,v) = u , and y h u v) = u 1− v)
The Jacobian is 
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∂h ∂h1 1= v = u 
∂u ∂v (5.46) 

∂h ∂h2 2= 1− v = −u 
∂u ∂v 

The absolute value of the determinant of the Jacobian is | ( . Thus, J u,v) |=| −uv−u(1− v) |= u

fuv ( , = fxy (uv, 1− v))uu v) u(

+λα β
α−1 β −1 −λu= ( ) [u( − v)] e u (5.47) uv 1

Γ( )Γ( )  α β

λ +α β
α β− −λu α 1+ 1 β −1= u e v − (1− v) . 

Γ( )Γ( )  α β

Multiplying and dividing by Γ(α β yields + ) 

+λ + 1 − u Γ α + β − ( β 1 
α β

α β− λ ( ) α 1 −f u v) = u e v 1−( , v)uv Γ(α β ) Γ α )Γ(β )+ (
(5.48) 

= f u v)( ) f (u v 

We see that f u +( ) is the probability density of a gamma random variable with parameters α βu
and λ , whereas ( ) is the probability density of a beta random variable with parameters αf vv
and β . Therefore, the joint probability density ( ,f u v) is the product of a gamma and a beta uv 
density. By Lecture 4, because f u( ,v) = (u) fv (v),we conclude that u and v are independent. uv fu 

Notice that the arguments used in Eqs. 5.45 to 5.48 are essentially the arguments used to 
compute the normalizing constant for the beta probability density in the Addendum to Lecture 
3. 

Example 5.7. Let X and Y be independent standard Gaussian random variables. Find the joint 
density of U = X and V = X + Y . We have 

g x ) x g ( , y) = 1( , y = 2 x x + y 
(5.49) 

x h1( ,v) = u y = h2( ,v) = v −u= u u
The Jacobian is 
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∂h ∂h1 1= 1 = 0 
∂u ∂v 

∂h ∂h2 2= −1 = 1 
∂u ∂v 

and the absolute value of its determinant is 

| (J u,v) |=1×1−1×0 =1. (5.50) 

Therefore, 

fuv u fxy ( , | |= fx( ,v) = u v  − u) J (u) f y (v − u) |  J | 

1 2= (2π )−1 exp{− [u + (v − u)2 ]}×1 
2 

(5.51) 1 2= (2π )−1 exp{− [u + v2 − 2uv  + u2 ]} 
2 
1 2= (2π )−1 exp{− [2u + v2 − 2uv]}. 
2 

Now matching up the terms on the right hand side of Eq. 5.51 with the terms in the joint density 
function of the bivariate Gaussian density in Eq. 4.32 yields 

µ = µ = 0u v 

σ σu v (1 − ρ2 ) 
1
2 = 1 and σ 2 (1 − ρ2 ) = 12 ⇒σv 

2 = 2 (5.52) u

2 2 2 1 
2σv (1 − ρ ) = 1 ⇒ ρ = or ρ = 2−
1 

and σu = 1. 
2 

Therefore, U and V have a bivariate Gaussian probability density with 
2 2 − 12µ = µv = 0,σu = 1,σv = 2 and ρ = 2 .u 

Proposition 5.1 generalizes to n random variables (see Rice pp. 102-103). 

IV. Summary 
We have shown how to construct conditional pmf’s and pdf’s. In so doing, we have laid 
important groundwork for our statistical analyses. Similarly, understanding the convolution 
process that is necessary to compute the pmf or pdf of the sum of two independent random 
variables gives us key insig ht into how an important result like the Central Limit Theorem 
comes about. 
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