
       
    

 
   

    
 

  
          

   
 

          
  

 
         

 
        

        
 

            
 

 
 

 
  

 
              

  
 

   
 

    
 

 
    
 

  
 

  
 

    
 

 

    

 
  

 

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 6: Expectation and Variance, Covariance and Correlation,  
And Movement Generating Functions  

I. Objectives 

Understand how to compute expectations and variances for linear combinations 
of random variables. 

Understand how to compute the covariance between linear combinations of 
random variables.  

Understand the concept of moments of a probability density.  

Understand how the moments of a probability density or probability mass  
function can be derived from the moment generating function.  

Understand the basic properties of moment generating functions and their use in  
probability calculations.  

II. Expectations and Covariances 

A. Expectation 

In Lectures 2 and 3, we defined the expected value of a discrete and continuous random 
variable respectively as 

1. Discrete 
If 

X : p ( )x (6.1) x 
then 

( )  ( )  (6.) E X  x p x  = ∑ i x  i  

provided that | |  ( )  x p x < ∞.∑ i  x i

2. Continuous 
If 

X : fx ( )x (6.3) 
then 

∞ 
E x  = ∫ x (6.4) ( )  x f  x d( ) x 

−∞ 

provided that | |  ( )  x f  x dx < ∞.∫ x
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Remark 6.1. The expected value has an important physical interpretation as the center of mass 
or the first moment. 

We also stated that if = ( )X we can obtain the expected value of YY g  , directly without first 
computing p y( ) or f y . That is, given Y g= Xy y ( ) ( )  

1. Discrete 
If X p ( ) then : xx 

( )  ( ) ( )x	 (6.5) E Y  = ∑g x p  x 
x 

provided that ∑| ( ) | ( )  .g x  p x < ∞ 

2. Continuous 
If X : fx ( ) then x 

∞ 
( )  ( ) ( ) x	 (6.5) E Y  = ∫ g x  f  x x d−∞ 

provided that | ( ) |  ( )  x < ∞.g x  f x d∫ x

Proof (Discrete Case) 

E Y( )  y p  y  (  ). 	  (6.6) = ∑ i y  i  
i 

Let Ai be the mapped into by y by g. We have ∈ if g x( )  . Hence, x's x Ai = yi 

( ) = ( )  p y  p x  y i 	  ∑ x 
x Ai∈ 

( ) = yi x ( )  E Y 	  ∑ ∑ p x  
i ∈ ix A  

i x ( ) 	  (6.7) = ∑∑ y p  x  
i x A  i∈ 

= g x p  x  ( )  ( )  ∑∑  x 
i x A  i∈ 

∑ ( )  ( )x .= g x p  x  
x 

Remark 6.2. A very important function ( ) whose expected value we considered is g x  

( )  (  x − µx )
2 which is the variance of X . We know that g x  = 

2	 2 2 2 2 2( (  )) = E X  − µ ) = E X  − 2Xµ + µ ] = E − µ .σ = E g X  ( [	 Xx	 x x x x 



 

       
 

       
 

    
  

 
    
 

  
 

    
  

 
    

 
  

 
        

        
 

        
 

           
 

                
  

 
       

        

    

                 
        

 
     

 
               

         
              

                

 

page 3: Lecture 6: Expectations and Variances, Covariances and Correlation, Moment Generating Functions 

The standard deviation of X is xσ 2[EX= 
1 
22 ] .xµ− 

In general, if 1,..., nX X are jointly distributed random variables and 1( ,...,  )nY g X  X= then 

1. Discrete 
If 1 2,  ,...,  nX X  X : 1 2(  ,  ,...,  )x np X X  X  then 

( ) E Y  1 1( ,..., ) ( ,..., )= ∑ n x ng  x  x  p  x  x  (6.8) 

provided that |∑ 1( ,..., ) | ng x  x  1( ,..., )x np  x  x  .< ∞ 

2. Continuous 
If 1 2,  ,...,  nX X  X : 1(  ,...,  )x nf x  x  then 

1 1 1( )  (  ,...,  ) (  ,...,  )  ,...,n n nE Y  g  x  x  f  x  x  dx  dx= ∫ (6.9) 

provided that (| |) .E Y  < ∞ 

Remark 6.3. If X and Y are independent and g and h are fixed functions, then 
[ ( ) ] provided that each of the expectations on the right is finite. E g  X  h Y  [ (  ) ( )] = E g X  E h Y  ] [ ( )

B. Expectations of Linear Combinations of Random Variables 

In Lectures 2 and 3 we stated that if Y = aX + b, then E Y  = aE  X  ( )  +( )  b. 

That is, expectation is a linear operation. We now state a very important generalization of this 
result. 

Proposition 6.1. If X1,..., X are jointly distributed random variables with expectations ( )E Xn i 
and Y is a linear function of the Xi 's, 

n 
= +∑biE( )Xi .Y a  (6.10) 

i=1 
Simply stated, the expectation of the linear combination of a set of random variables is the linear 
combination of the expectations provided that each expectation is finite. 

Proof: (see Rice, p. 125). 

Example 2.1 (continued). The rat executed 40 trials of a learning experiment with a probability 
p of a correct response on each trial. What is the expected number of correct responses? Each 

trial is a Bernoulli experiment with probability p of the animal executing it correctly. Let Xi be 
40 

the outcome on trial i, then Y = ∑ Xi is the total number of correct responses on each trial. 
i=1 

Hence, 



 

    

 
              

      
 

            
             

               
          

 

    

 
  

 

    

 
 

 

    

 
                

          
          

         

          
     

 

page 4: Lecture 6: Expectations and Variances, Covariances and Correlation, Moment Generating Functions 

40 
( )  = E(∑ iE Y  X ) 

i=1 
40 

= ∑ ( )i (6.11) E X  
i=1 
40 

= ∑ p = 40 p. 
i=1 

In general, if there were n trials ( )  np. We showed this result before in Lecture 2 using the 
definition of expectation directly and the binomial theorem. 

E Y  = 

Example 5.4 (continued). Suppose that the number of channel openings in a 500 msec time 
interval at each of n sites at the frog neuromuscular junction is a Poisson random variable. 
Each site has an expected number of openings λi per millisecond for i = 1,..., n. What is the 
expected number of openings in 500 msec across all n sites? We have 

X : P( )λi i 
(6.12) 

( ) = λE Xi i 

and in 500 msec we have 

Z = 500Xi i 
(6.13) 

( )  = 500  λE Zi i 

and 

n 
Y = ∑Zi 

i=1 

N (6.14) 
( )  = E(∑ iE Y  Z ) 

i=1 
n n 

= ∑E Z( i ) = 500 ∑λi . 
i=1 i=1 

Example 5.4 (continued). We assumed that the length of time that each of two channels is 
open is an exponential random variable with parameters λ1 and λ2 respectively. What is the 
expected sum of the opening times at the two sites? We have X : E( )  i = , andλ 1 2i i 

1 −1 −1E X  λ− = ( Notice that when we( ) = . Hence, Z X  X+ and E Z( ) = E X  + X ) = λ + λ . λ = λ = λi i 1 2 1 2 1 2 1 2 

have E Z( )  2  λ−1 This is completely consistent with our observation that when λ = λ,= . = λ1 2 
Z : Γ(2, λ), which we showed in Lecture 5. 
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III. Covariance and Correlation 

A. Covariance 
Example 4.6 (continued). In this example, we saw that positive values on one sensor were 
associated with positive values on the other sensor and negative values on one sensor were 
associated with negative values on the other sensor. The values seemed to be related. We 
formalize the characterization of this relationship in terms of the concept of covariance and 
correlation. The latter we have already discussed in terms of the correlation coefficient. 

Definition 6.1. If X and Y are jointly distributed random variables with E X  and( ) = µx 
E Y( ) = µy , then the covariance of X and Y is 

Cov( , ) = E X  ( − µx Y − µy )X Y  )( 
∞ ∞ (6.15) 

= (X − µx )(  µy ) f y ( ,  )  x yY − x y d d .∫ ∫  x−∞ −∞ 

Remark 6.4. The covariance of X and Y measures the strength of the association between X 
and Y in the sense mentioned above in Example 4.6. It is the first cross moment of X and Y . 
It has units of the random variables squared, assuming X and Y measure the same thing. 

Remark 6.5. If = ,X Y we have 

Cov( , ) = E X  ( − µx Y − µ y )X Y  )( 

( − µ )2 (6.16) = E X  x 

=σ x 
2. 

Therefore, the covariance of X with itself is simply the variance of X . 

Remark 6.6. Variance is the second central moment, and ( 2 is the second moment. The E X  ) 
variance tells us about how mass is distributed away from the mean. We report the standard 
deviation because σ is on the same scale (units) as X .x 

Remark 6.7. We have on expanding the terms in Definition 6.1 

Cov( , ) = E X  ( − µx Y − µ y )X Y  )( 

( − µ Y − µ X + µ µ  )= E XY x y x y 

x ( )  yE X ) + x y = E XY ( ) − µ E Y − µ ( µ µ  (6.17) 
= ( ) − µ µ  − µ µ  E XY + µ µx y  y x x y  

= ( ) − (  ) ( ).  E XY E X E Y 

Example 6.1 (Rice p. 138). Suppose X and Y have the joint probability density 

( , )  (2x + 2y − 4 )  f x y  = xy 
(6.18) 

where x ∈(0,1) and y ∈ (0,1). 
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Find Cov( ,X Y ). First it is easy to show that 1( )  ( )  
2 

E X  = E Y  = 

1 1  

0 0  

1 1  

0 0  

1( )  (2  2  4  )  
2 

1( )  (2  2  4  )  
2 

E X x x y xy dydx 

E Y y x y xy dxdy 

= + − = 

= + − = 

∫ ∫  

∫ ∫  
(6.19) 

We need to compute 

1 1  

0 0  

2(  )  (2  2  4  )  .  
9 

E XY  xy  x  y  xy dxdy= + − =∫ ∫  (6.20) 

Hence, 

22 1 1Cov( , ) ( ) ( ) ( ) ( ) . 
9  2  36  

X Y  E XY  E X E Y  = − = − = − (6.21) 

Here are 4 useful results. 

Result 6.1 Cov( ,a X  )Y+ 

Cov( , ) (( ) ) ( ) ( ) 
(  )  (  )  [  (  )  (  )]  (  )  
( )  (  )  (  )  ( )  (  )  ( )  
(  )  (  )  (  )  (  )  (  )  
cov( , ) 

a X  Y  E  a X  Y  E  a X  E  Y  
E aY E XY E a E X E Y 
aE Y E XY E a E Y E X E Y 
E XY E X E Y aE Y aE Y 

X Y  

+ = + − + 
= + − + 
= + − − 
= − + − 
= 

(6.22) 

Result 6.2 Cov( ,aX bY ) 

Cov( , ) ( ) ( ) ( ) 
(  )  (  )  (  )  
cov( , ) 

aX bY E aXbY E aX E bY 
abE XY abE X E Y 
ab X Y 

= − 
= − 
= 

(6.23) 

Result 6.3 Cov( ,X Y  Z)+ 

Cov( , ) ( ) ( ) ( ) 
(  )  (  )[  (  )  (  )]  
(  )  (  )  (  )  (  )  (  )  (  )  
(  )  (  )  (  )  (  )  (  )  (  )  
cov( , ) cov( , ) 

X Y  Z  E XY  Z  E X E Y  Z  
E XY  XZ  E X  E Y  E Z  
E XY  E XZ  E X E Y  E X E Z  
E XY  E X E Y  E XZ  E X E Z  

X Y  X Z  

+ = + − + 
= + − + 
= + − − 
= − + − 
= + 

(6.24) 
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Result 6.4 Cov( aW + bX + cY + dZ) 

Cov( aW + , + dZ) = Cov( aW + bX cY ) + Cov( aW + ,bX cY , bX dZ ) 
Cov( , ) + cov( bX cY ) + Cov( , ) + Cov( bX dZ )= aW cY , aW dZ , (6,25) 
acCov( , ) + bcCov( X Y ) + ad WZ ) + bdCov( ,= W Y , Cov( X Z ). 

We can state the following general result 

I J 
Proposition 6.2. Let U a  ∑ X = j j  = 0 + ai i  V b  0 + ∑b X 

i=1 j=1 

Then 

I J 
Cov( U V, ) a b  Cov( i , ). (6.26) = ∑∑ i j  X X  j 

i=1 j=1 

We will be more interested in the following special cases 

Cov( X Y , X Y ) = Cov( X X  ) + Y ,Y ) + 2Cov( X ,Y )+ + , Cov( 
i) (6.27) 

Var( X ) + Y + 2Cov( X ,Y )= Var( ) 

− (6.28) ii) Cov( X Y X Y  , − ) = Var( X ) + Var( ) Y − 2Cov( X ,Y) 

∑ 
I 

iii) If U a  X and are independent then = + ai i  Xi  
i=1  

I I 
Var( U ) = Cov( U ,U ) = Cov( a + a X a  , + a X )∑ i i  ∑ j j  

i=1 i=1 
I I  

(6.29) 
= a a cov( X X ). ∑∑ i j  i j  
i=1 j=1 

If i ≠ j , 0 because the are independent. If i = j X Xi , j ) = Var( Cov( X X j ) = Cov( X ). i Xi i 

Thus, 

I I 
2 2 2Var( ) U = ∑ai Var( Xi ) = ∑ai σ i . (6.30) 

i=1 i=1 

This result is to some extent the analog for variances of the result for expectations established 
in Proposition 6.1. We required independence in the variance calculations. 
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Example 2.1 (continued). Here X B( ,  )  p where What is the variance of We can : n n = 40.	 X ? 
write 

40 
X = ∑Yi (6.31) 

i=1 

where Yi : Bernoulli with probability of a correct response p. 

If we assume (as we do) that the Yi 's are independent, then by Proposition 6.2 iii 

40 40 
Var( X ) = ∑Var( Yi ) = ∑ p(1 − p) = 40 p(1 − p). (6.32) 

i=1 i=1 

In general, for n we have Var( X ) = np  (1 − p). We did not show this before because it is very 
tedious to do directly from the definition of the variance. 

Example 6.2. Integrate and Fire Model as a Random Walk + Drift 
As we discussed in Lecture 3, an elementary stochastic model for the subthreshold membrane 
voltage of a neuron is the random walk with drift model proposed by Gerstein and Mandelbrot 
(1964). In continuous time, it is 

∫
t 

( ) = µt +σ d ( ) 	  (6.33) V t  W u  
t0 

where W t( ) is a Weiner process, i.e. a continuous time Gaussian random variable with mean 0 
and variance 1. We assume ) = for ≠ .( ( ) ( s t To simulate this on the computer we 
rewrite it in discrete time as 

E W  s W t ) 0

i 
V t( ) = µ i +σ Wi (6.34) i t	 ∑ 

j=0 

where Wi : N(0,1). Find the variance of V t( ) Applying Proposition 6.2 iii we get i . 

i 
Var( ( )) i = Var( µti ∑V t  + σ Wi ) 

j=0 
i 

2= σ ∑Var( Wi ) (6.35) 
j=0 

= σ 2 ( 1).  i + 

This is a restatement of the well-known classic result that the variance of a random walk is 
proportional to the length of the walk. Uncertainty increases with time. Notice however, that 
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i i 
( ( )) = E(µt +σ W ) = E µt +σ ( )  E V  t  ( )  E W  = µt + 0i i ∑ i i ∑ i i (6.36) j=0 j=0 

= µt .i 

On average the random walk with drift will be on the course of linear increase in membrane 
voltage. (see Gerstein GL, Mandelbrot M. Random walk models for the spiking activity of a 
single neuron. Biophysical Journal 4:41-68, 1964). 

B. Correlation 

Definition 6.2. If X and Y are jointly distributed random variables and the variances and 
covariances of X and Y are non-zero, then the correlation of X and Y is 

Cov( , ) Cov( X Y )X Y  ,ρ = = . (6.37) 
2[Var( X )Var( )] 
1 σ σY x y  

Example 6.1 (continued). Find ρ. We have E X( ) = E Y  = 1 and we computed Cov( X Y ) = − 1( )  , .
2 36 

Because X and Y are both uniform on (0,1) it is easy to show that Var( X ) = Var( ) Y = 1 . Now, 
12 

we have 
1 1− − 136 36ρ = = = − . (6.38) 

1 1 1 32( × )
1 

12 12 12 

We now establish an important property of the correlation coefficient.  

Proposition 6.3. − ≤  ≤  1 ρ 1. ρ = ±1 Y a b ) =1 for some constants a and b. if and only if Pr( = + X

Proof: 

X Y  0 Var(  + )≤ 
σ σx y 

Var( X ) Var( ) X Y  Y  = + + 2Cov(  ,  )
σ σ σ σx y x x 

Var( X ) Y Cov( X ,Y )Var( ) = 2 + 2 + 2 (6.39) 
σ σ  

1 + 1 + 2ρ 
= 2(1 + ρ) 

σ x σ y x y  

Or 2(1 + ρ) ≥ 0 ⇒1+ ρ ≥ 0 or ρ ≥ −1. Also 

X X0 ≤ Var( − ) = 2(1 − ρ) (6.40) 
σ σx y 
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Or 2(1 − ρ) ≥ 0 ⇒ (1 − ρ) ≥ 0 1 ≥ ρ. To prove the last statement of the proposition requires 
Chebyshev’s inequality which we will prove in Lecture 7. 

Remark 6.8. Correlation provides a normalized (scale-free) measure of covariance. 

Example 4.6 (continued). We previously stated in Lecture 4 that ρ was the correlation 
coefficient for a bivariate Gaussian probability density. Now we demonstrate this by showing 
that cov( , ) = ρσ σ .X Y  x y  

∞ ∞  
Cov( X Y, ) = ∫ ∫  (x− µx)( y −µy ) ( , ) x y (6.41) f  x y d d . 

−∞ −∞ 

Make the change of variables u = (x − µ ) /  σ , v = (y − µ ) /  σ and we have x x y y 

σ σ ∞ ∞ ⎧ ⎫x y  ⎪ 1 1 ⎪ = 
π 2 1 ∫ ∫  uv exp ⎨− 2 (u

2 + v2 − 2ρuv)⎬
⎪ 
dudv (6.42) 

2 −∞ −∞2 (1  − ρ ) ⎪⎩ 2 (1− ρ ) ⎭ 

completing the square 

2σ σ  ∞ ⎧ ⎫⎛ ∞ ⎧ ⎫ ⎞vx y  ⎪ ⎪  ⎪  1 2 ⎪ = vexp ⎨ ⎬⎜ u exp ⎨− (u − ρv) ⎬du du ⎟ , (6.43) 
2 12 ∫−∞ 2 ⎜ ∫−∞ 2 ⎟2 (1  π  ρ  − ) ⎪ ⎪  ⎪⎩ 2(1 − ρ ) ⎭⎪⎩ ⎭⎝ ⎠ 

The inner integral is ( )  [× 2 ( − ρ2) 2
1 
= ρv[2 (π 1− ρ2)]  

1
2E u  π 1 ] 

1
2 2ρσ σ [2 (1 − ρ 2)] ⎫x y  π ∞ 2 ⎪⎧v ⎪ = 1 × v exp ⎨ ⎬dv2 ∫2 (1  − ρ ) 2 −∞ ⎩ 2 ⎭π ⎪ ⎪ 

2ρσ σ (2 ) 
1 

2 E v  (6.44) = x y  π 
(2 ) π 

1 
( ) 

2π 
= ρσ σ .x y  

IV. Moment Generating Functions 

“Learning to use moment generating functions in probability calculations is like going from using 
a PC to using a supercomputer.” -- E.N. Brown 

As we will see, the moment generating function simplifies many of the calculations we have 
already done and will enable many more, the most important of which is the proof of the Central 
Limit Theorem. 
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thDefinition 6.3. The r moment of a random variable X is 

∞r r( ) x  f  x dx  (6.45) E X  = ∫ x ( )  
−∞ 

provided the expectation exists. The r th central moment of a random variable X is 

∞r rE X  E X  − x  f x{[ − ( )] } = (x E( )) ( ) dx (6.46) ∫−∞ x 

provided that the expectation exists. 

Remark 6.9. Some key factoids about moments 

E X  st( ) = µ 1  moment 

( 2 ) nd moment E X  2 

2 2 nd( − µ) = σ 2  central moment (variance) E X  

( − µ)3 3rd   central moment E X  

( − µ)4 4th   central moment E X  

The skewness measures the asymmetry of the distribution 

Figure 6.A. Examples of Negative (left panel) and positive (right) skew in a probability 
density. 

It is defined is 
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( )3E X − µ 
3 

(6.47) 
σ 

The skewness of standard Gaussian distribution is 0.  

The kurtosis measures how “fat” the tails of a distribution is often reported as  

( − )4E X  µ 
4 

(6.48) 
σ 

or to make a comparison relative to a standard Gaussian distribution as 

( − )4E X  µ 
4 − 3 (6.49) 

σ 

because for kurtosis for the standard Gaussian distribution is 3. 

E etxDefinition 6.4. The moment generating function (mgf) of a random variable X is ( ) which is 
in the 

Discrete Case 
txM tx ( )  e px ( )  (6.50) = ∑ x 

x 
and is in the 

Continuous Case 

∞ tx 
x ( ) = ∫ e fx ( )  M t  x dx  (6.51) 

−∞ 

provided the expectations exist. This depends critically on how fast the tails in the probability 
density “die out”. 

Result 6.5. If M t( )  exists in an open interval containing zero it uniquely determines f x( ).x x

This is an important, deep result which allows us to perform computations on M t( )  to establish x
properties of X and f x( ). For example, if we differentiate M t( )we obtain x

∞ 

dt
d ∫−∞ 

txM '( ) t = e fx ( ) x dx 

d tx= ∫
∞ 

e fx ( )x dx (6.52) 
−∞ dt 
∞ txxe f ( )= x dx ∫−∞ x 

and 
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∞ 
'(0) = xf  ( ) = E X  ) (6.53) M  x dx  (x∫−∞ 

Differentiating r times and evaluating the derivative at zero gives 

r rM ( ) (0) ( (6.54) = E X  ). 

r rResult 6.6. If M t( ) exists in an open interval containing 0, then M ( ) (0) = E X  ). In this sense ( 
M t( ) can be used to “generate” the moments of X . 

Example 6.3. Poisson MGF 
∞ tk k e λ −λM t( ) = ∑ e 

k !k=0 
∞ (λet t) −λ= e (6.55) ∑ k !k=0 

t k  t t−λ (λe ) −λ λe λ(e −1)= e = e e = e .∑
∞ 

k !k=0 
Then sum averages for all t. Differentiating, we have 

t λ(e −1)  M t'( ) = λe e 
t 

t−1 t−1t λ(e )  2 2  t λ(e )''( ) = λe e + λ (M t  e e  ) 
(6.56) 

M '(0) and λ ⇒ E k  ( ) = λ 

2 2 2 2 2 2 2(0) = +  ( + E k  E k  λ λ λ  λ  M '' λ λ  and E k  ) = λ λ  or ( ) −[ ( )] = + − = . 

Example 6.4 Gamma MGF 
∞ etx βα

α− −1 β xM t ( ) = x e dx∫0 Γ( )α 

α ∞β α−1 (t−β )x= x e dx (6.57) 
Γ( ) ∫0α 

βα Γ( )  αα β = = 
Γ α( ) (β − t)α (β − t)α 

where we require t < β for the integral to exist 
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α −(α+1)  αM t'( ) = αβ (β − t) ⇒ M (0) = E X  )' ( = 
β 

(6.58) 
α −(α+2)  2 ( +1)  '' = ( +1) β (β − t) ⇒ M ' (0) = E X  ) α α  

2M t( ) α α  ' ( = 
β 

⎛ ⎞2 2 α α( +1)  α 2 αand Var( X ) = ( ) −[ ( )] = 2 −⎜ ⎟ = 2 .E X  E X  
ββ ⎝ ⎠ β 

Example 6.5. Standard Gaussian MGF 

1 ∞ x− tx − 2 = 2 2 M t( )  (2 )  π e e  dx  (6.59)  ∫−∞ 

Complete the square to rewrite 

2 

2 
x tx− = 21 (

2 
x 2 212 ) 

2 
tx t t− + − (6.60) 

and hence, 

( )M t = 
2 
2 

1 
2(2 ) 

t 
e 

π 

2( ) 
2 . 
−−∞ 

−∞∫ 
x t  

e dx (6.61) 

Let u x t= − then dx = du 

= 
2 
2 

1 
2(2 ) 

t 
e 

π 

2 
2 

∞ 

−∞∫ 
u 
e du = 

2 
2 

1 
2(2 ) 

t 
e 

π 

1 
2(2 ) π 

2 
2 .= 
t 
e (6.62) 

Result 6.7 (Linear Transformation). If X has mgf ( )xM t  and Y ,a bX= +  then Y has mgf 

M t( ) = e M ( )at bt  .y x 
Proof: 

M t( ) = E e  ( tY )Y 
at +btX ( ) (6.63) = E e  
at btX at btX at = ( e ) = e  E e( ) = e M ( )  E e  x bt  

2 t2 µt µt σ 2Example 6.5 (continued). Let Y µ σ X where X N then M t  e M  = ( )  σ( )  t  e e .= +  : (0,1) Y x = 

Result 6.8 (Convolution of Independent Random Variables) 
If X and Y are independent with mgf’s M t( )  and M t( )  respectively, and Z = X + Y , then x y

M t  M t ( )  on the common interval where both mgf’s exist. ( ) = ( )M t  z x y 
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M t( ) = ( tZE e  )z 
( + )= E e( t X  Y  ) 
tX tY ( ) (6.64) = E e  e  
tX tY= E e(  ) (  E e  ) 

= x ( )  y ( )M t M  t  

by independence. 

Example 5.4 (continued). We had X E o e t a Y E p n n i l λ a d We: xp n n i l( )λ : x o e t a (  ) n Z X Y  = + .1 2 
showed that if λ = λ = λ and X and Y are independent, then Z : Γ(α = 2,  β = λ).  We now 1 2 
establish the same result using mgf’s (Example 6.4 and Result 6.8). 

( ) = ( )M t  M t  M t ( )z x y 

λ λ = (  )(  )  (6.65) 
λ − t λ − t 

= ( λ )2 
λ − t 

which is the mgf of a gamma random variable with α = 2 and =β λ. 

Example 6.6. X N: ( ,  )  µ σ 2 : µ 2 and Y are independent. Find the distribution Y N  ( ,  )  σ and Xx x  y y  

of Z = X + Y . By Example 6.5, 
M t  M t( ) = ( )M t  ( )z x y 

2 2 

σ x 
2 

µ σ y 
2t t 

µx 2 y 2= e e  e e  (6.66) 
2 2 t2 ( x + y )(µ µ+ ) σ σ  

x y 2= e e 

Hence, Z N(µ +µ ,σ 2 +σ 2).  : x y x  y  

Remark 6.10. There is an obvious generalization of Result 6.8, namely if X1,..., X are n 
n 

independent random variables with mgf’s xi ( )  , ..,  ,  n and Z = ∑ Xi , then M t  i  =1 .
i=1 

n 
M t( ) M t  ( ). (6.67) z = ∏ xi 

i=1 

The Xi 's do not have to come from the same distribution. 

Remark 6.11. In general, if two random variables follow the same distribution the sum will not 
necessarily follow the same distribution. See Example 5.4, 5.5 and consider the case of two 
independent gamma random variables with β = β2.1 

Remark 6.12. Result 6.8 is the special case of the well-known mathematical fact that the 
convolution of two functions in this case probability density functions in the probability (time) 
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domain corresponds to multiplying the transforms in the t (frequency) domain. This result is 
exploited a lot in linear systems theory and Fourier analysis. 

Remark 6.13. There is a multivariate generalization of the mgf which we will not consider. 

Remark 6.14. The limitation that the mgf may not exist is rectified by working instead with the 
characteristic function 

φ ( )t = ( itXE e  )x 
∞ itx 

(6.68) 
= ∫ e fx ( )x dx −∞ 

2where i = ( 1
1 

The integral converges for all t because | eitx |  1.  The characteristic function has − ) .  ≤ 
the same properties of the mgf without the existence limitation. Its use requires familiarity with 
complex numbers and their manipulations. 

V. Summary 
We can now perform basic probability calculations on linear combinations of random variables. 
These results have now established the essential groundwork for proving the Central Limit 
Theorem in Lecture 7. 
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