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Lecture 7 Limit Theorems: Law of Large Numbers and the Central Limit Theorem 
 
I. Objectives 
Understand the logic behind the Law of Large Numbers and its relation to the frequency 
interpretation of probability theory 
 
Understand how to prove the Weak Law of Large Numbers 
 
Understand the logic behind the Central Limit Theorem 
 
Understand how to prove a version of the Central Limit Theorem 
 
Understand how to construct approximations to the distribution of the sums of random 
variables using the Central Limit Theorem 
 
Understand the conditions under which the Gaussian distribution can be used to 
approximate binomial and Poisson probabilities 
 
II. Law of Large Numbers 
To motivate our study of the Law of Large Numbers we begin with an example.  
 
Example 7.1. An Opinion Poll. An election is to be conducted for President of the Society for 
Neuroscience and there are two candidates for the office: Candidate A and Candidate B. If we 
poll n  voters and we assume that each individual polled reports truthfully his/her voting intention 
then how sure can we be that the fraction of people who report that they will vote for Candidate 
A is a good “guess” (estimate) of the number who will actually vote for Candidate A?  
 
Our intuition is that the fraction of people who say they are going to vote for Candidate A should 
be a good “guess” of the proportion of votes that Candidate A will get in the election. 
Furthermore, the more people we poll, the better our “guess” should be.  With what we know 
already, we can formalize our intuition. If we let p  denote the fraction of people who will vote for 
Candidate A, we can define iX  to be the Bernoulli random variable which is 1 if person i  is 

going to vote for Candidate A and 0 otherwise. Let 1
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X n X  X  is the fraction of people 

polled who vote for Candidate A. Our intuition is that X  is a good guess for .p  This intuition is 
what we colloquially call the “Law of Averages.”  
 
To begin thinking formally about this problem we recall that a statistic is any function of a set of 
data. Because experimental data are random and the statistic is a function of the data, the 
statistic is also a random variable. It therefore, has a probability density or probability mass 
function. If we observe random variables 1 2, ,..., nX X X  such that the 'siX  are independent and 
all have the same probability distribution, then the collection 1 2, ,..., nX X X  is called a random 
sample or simply a sample. The sample mean is one of the most basic statistics and we recall 
that it is defined as 
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Remark 7.1. If the mean and variance of the 'siX  are respectively   and variance 2 ,  then by 
Propositions 6.1 and 6.2 we have 
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The Law of Large Numbers tells us that as the sample size increases the probability that 
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X n X is close to the mean   approaches 1. To prove this, we establish first two 

technical results. 
 
 
A. Some Technical Results 
Proposition 7.1 (Markov Inequality). If X  is a random variable that takes on only non-
negative values, then for any 0a   

  [ ]Pr( ) 
E XX a
a

. (7.5) 

Proof: To see this note that 
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Proposition 7.2 (Chebyshev’s Inequality). If X  is a random variable with mean   and 
variance 2   and 0k  , then  
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Proof: Let | |Y X    then 0Y   and by the Markov Inequality 
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Having established Chebyshev’s Inequality we can prove the Weak Law of Large Numbers. 
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B. The Law of Large Numbers 
Proposition 7.3 Law of Large Numbers (Weak). Let 1 2, ,..., nX X X  be an independent, 
identically distributed (i.i.d.) sample from a population with mean   and variance 2.  Then the 
probability that the difference between the sample mean and true mean remains greater than 
any finite amount goes to zero as the sample size n  goes to infinity. 
 
Proof: If we pick 0,  then we can  
 
  Pr(| | ) 1 Pr(| | ).X X          (7.9) 
 
Using Chebyshev’s Inequality, for 0,   
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 (7.10) 

 
as n  goes to infinity.  Hence, Pr(| | ) 1 Pr(| | ) 1.X X           
 
Example 7.2 The Law of Large Numbers and the Behavior of the Sample Mean. To gain 
intuition about what is occurring with the Law of Large Numbers, we consider (Figure 7A) the 
mean of n  observations from a gamma distribution with 2   and 1   (Figure 7A ,column 1) 
and an arbitrary distribution (Figure 7A, column 2) for 1,2,4,16n   and 400.  We can see that in 
the case of the gamma distribution (Figure 7A, column 1) as n  grows, the distribution of the 
sample mean gets more and more tightly clustered around the true mean. Similarly, for the 
arbitrary distribution an analogous phenomenon is observed (Figure 7A, column 2).  
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Figure 7A. Illustration of the Law of Large Number by averaging n  observations from a gamma distribution 
with 2   and 1   (column 1) and a bimodal distribution (column 2) for 1,2,4,16n   and 400.  
Reproduced from Dekking et al.  (2002). 
 
 
Example 7.1 (continued). Can we use Chebyshev’s Inequality to figure out how large n  should 
be such that we are 95% certain that the difference between X  and   is less than 0.005? We 
will answer this question in Homework Assignment 6. 
 
Remark 7.2. From the result in Proposition 7.3, we say that X  converges in probability to  . 
The best result known is the Strong Law of Large Numbers. It states that  
 
  Pr(| | 0) 1.X     (7.11) 
 
as long as   exists. This means X  is guaranteed to converge to   in the usual numerical 
sense. Therefore, we are correct in thinking that an observed X  is close to the true mean. This 
is not guaranteed by convergence in probability. The statement, “the sample mean is close to 
the true mean” does not apply to a particular realization. In contrast, the Strong Law of Large 
Numbers addresses what occurs to the result of a single realization of the data (Pawitan, 2001, 
pp. 231-232).  
 
Remark 7.3. What is apparent from Figure 7A is that the sample mean is getting closer to the 
true mean. This is a first-order effect because it involves the mean (first moment). As the 
number of samples became large in Figure 7A, the shape of the distribution became more 
symmetric or “Gaussian-like”. We might think of this effect as a second-order effect because it 
tells us something about the variability (second moment) of the statistic or the shape of its 
distribution. The second-order effect addresses the question of what is the behavior of the 
random variable X  as it approaches its mean? That is, can we characterize its probability 
density? The Central Limit Theorem allows us to answer these questions.  
 
 
III. The Central Limit Theorem 
A. Motivation  
The Central Limit Theorem is the most important theorem in probability theory and concerns the 
behavior of the sample mean as n  grows indefinitely large. Before stating the Central Limit 
Theorem, we give an example to motivate its derivation along with some technical results we 
will need to prove it.  
 
Example 7.3 A Fast Spiking Neuron. Consider a neuron with a constant rate   that obeys a 
Poisson probability law. Assume that  = 40 Hz. In a 1-second interval how likely are we to 
observe 40, 41, or 42 spikes? 
 
 We first develop a Gaussian approximation to compute this result then we compare it 
with the exact result computed directly from the Poisson probability mass function with  = 40 
Hz. To construct a Gaussian approximation we study the behavior of a sequence of Poisson 
random variables such that ( ) .n nX Poisson  and .n  We have that ( ) ( )n n nE X Var X    , 
and hence, ( )nE X and ( ) .nVar X   Therefore, we must standardize nX  to get a limiting 
distribution. Let 
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We have ( ) 0nE Z   and  ( ) 1.nVar Z  We show that 
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We have that 
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so that Eq. 7.15 can be written as 
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nz n zF z F z z  

 
 
In Homework Assignment 6, we present an alternative derivation of this result by showing 
directly that as n   the Poisson pmf ( ) ( )

nz nP z z  the pdf of a standard Gaussian random 
variable.  
 
Applying this result to our fast spiking neuron in Example 7.3 we have 
 
Gaussian Approximation 
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where we have used the continuity correction defined below in section III E. 
 
 
Exact Poisson Solution 
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We see that in this case, the approximation is very reasonable. 
 
B. Proof of the Central Limit Theorem 
 To prove the Central Limit Theorem, we need to state first a definition, a theorem and a 
technical result. 
 
Definition 7.1. If 1,..., nX X  is a sequence of random variables with cumulative distribution 
functions 1 2, ,...F F  and let X  be a random variable with distribution function .F  The sequence 
nX  converges in distribution to X  if  
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Proposition 7.4 (Continuity Theorem). Let nF  be a sequence of cumulative distribution 
functions with corresponding moment generating functions ( ).nM t  Let ( )F X  be a cumulative 
distribution function with moment generating function ( ).M t  If ( ) ( )nM t M t  for all t  in an open 
interval containing zero, then ( ) ( )nF X F X  at all continuity points of ( ).F X  
 
Result 7.1. If ,na a  then  
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This limit is established in advanced calculus courses.  
 
Proposition 7.5. Central Limit Theorem: Let 1 2, ,..., nX X X  be a sequence of independent 
random variables having mean   and variance 2 ,  common distribution function ( )F x  and 

moment generating function ( )M t  defined in a neighborhood of zero. Let 1
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Proof: To simplify the calculations, we assume 0.   Let 
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Because the 1,..., nX X  are independent, the mgf of nS  is  
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The Taylor series expansion of ( )M s  about 0 is 
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Now (0) 1,M  ( ) 0, '(0) 0E X M   and 2''(0) .M   We have 
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as .n  The same is true for any term larger than 3.t  Hence,  
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for n  large. By Result 7.1 and Proposition 7.4 
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which is the mgf of a standard Gaussian random variable.  
 
C. Applications of the Central Limit Theorem 
Example 7.3 (continued). The Gaussian Approximation to the Poisson Distribution. In the 
case of the Poisson distribution with parameter   we take the Gaussian mean and standard 
deviation to be    and 

1
2   respectively. This approximation is considered to be quite 

accurate according to Port (1994, p. 685) for 25.   That is, we must have on average 25 
events per unit time for the Gaussian distribution to be a good approximation to the Poisson 
distribution. Kass (2006) says the approximation is good for 15.   We will investigate which is 
correct in Homework Assignment 6. Hence consider a one second time interval and a neuron 
whose spike rate is on the order of 25 Hz. If its spiking activity obeys a Poisson process, then 
the distribution of the spiking activity on the one second interval could be approximated by the 
Gaussian distribution. We see already that the approximation is good for 40.   What are the 
implications of these observations for the recent paper by Wu et al. Neural Computation (2006) 
where Gaussian distributions are used to model the probability distributions of MI spiking 
activity?   
 
Example 7.4 The Gaussian Approximation to the Binomial. If n  is large and p  is not too 
close to either 0 or 1, then we can approximate the cumulative distribution function for the 
Binomial pmf as  
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
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where np   and 1

2[ (1 )] .np p    A commonly used rule of thumb that is somewhat conservative 
at least for 0.2 0.8p   is that it is reasonably accurate provided 5np  and (1 ) 5. n p  How 
does this compare to the rule for the Poisson approximation to the binomial? 
 
Example 2.1 (continued). Let us return to the Graybiel example to illustrate the effect of the 
CLT in the case of Bernoulli trials (which ultimately provides the Gaussian approximation to the 
binomial distribution). For 40n  trials we have 40 values of 0  (incorrect responses) and 1  
(correct responses). Suppose 0.55p   then we would expect in today’s experiment there would 
be 22 correct responses. However, when we examined the distribution of the sample mean (the 
proportion of correct responses) it turned out to appear very close to Gaussian. See Figure 2D. 
 
We can study the central limit theorem by simulation using the binomial distribution. Let us pick 

0.2,p   since for 0.55,p   the binomial pmf in Figure 2D looked very Gaussian. From Example 
2.1, this distribution could be motivated by the observation that on the first day of the 
experiment, the animal had 8 correct out of 40. Therefore, we might assume that on the second 
day, the probability of a correct response is 0.2 for any trial.  
 
 We begin with 'iX s  being equal to either 0 or 1. For example, with 40,n   we would 
have 40 values of 0 or 1. Suppose that 0.2,p   so that we would expect, on average, 8 of the 40 
values to be 1’s. Imagine a histogram of these 0’s and 1’s. Certainly with only two bins, these 40 
values would not look Gaussian. However, when we look at the distribution of the sample mean, 
it turns out to look very close to Gaussian. Here, from our initial 40 0’s and 1’s, we would obtain 
one value of the sample mean, which would be the proportion of 1’s in the sample.   
 
 Now we have to imagine having a large number of such samples, say 100 of them. That 
is, we take 100 samples of size 40 and for each sample we compute the mean of the 40 
observations. If we made a histogram of those 100 sample means we would get something 
nicely approximating a Gaussian distribution. We can study the theoretical distribution of the 
sample mean. For instance, for 4n   the possible values of X  are 0, 0.25. 0.5, 0.75 and 1 and 
can be plot ( 0), ( 0.25),..., ( 1)p X p X p X    versus 0, 0.25. 0.5, 0.75 and 1. This is shown in the 
first plot in Figure 7B. This plot essentially tells us what the heights of the histogram bar would 
be if we did have a histogram of the 100 sample means for a sample size of 4.n   The 
distribution of X  does not look very close to Gaussian. However, as the rest of Figure 7B 
shows, as n  increases, the distribution of X  looks more and more Gaussian. 
 
 What we have just done is study the distribution of X  for Bernoulli trials for several 

values of n  with 0.20.p   The distribution of 
1

n

n i
i

S x


  is Binomial and the picture of its 

distributions would look just like the pictures we had for the distribution of X  except the x-axis 
would be multiplied by .n  In particular, as n  gets large, we see the distribution looks Gaussian. 
This effect of the CLT may be considered as an explanation for the Gaussian approximation to 
the binomial. 
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 These results have allowed us to obtain an approximate distribution for one of our most 
important statistics, namely the sample mean. Can we use the CLT to predict a reasonable 
(most probable) range for the number of correct responses we can expect to see in today’s 
experiment if the animal does not learn? Alternatively, can we combine the CLT with the 
2

3 0.95  rule to construct a predictive confidence interval for p  in today’s experiment? How well 
does the rule for assessing the accuracy of the Gaussian approximation to the binomial apply? 
That is, based on the rule for application of the Gaussian approximation to the binomial, would 
we have predicted that the Gaussian approximation would have worked well for 0.55p   and 

40?n   How good is the approximation? Can we quantify the degree of agreement or goodness-
of-fit? We will answer these questions over the course of the next couple of weeks. 
 

 
 

Figure 7B. Central Limit Theorem illustrated for the binomial 4,10,25,100n   and 0.2.p   

  
 
D. Normalization in the Central Limit Theorem 
 The normalization for the sum of the random variables in the central limit theorem is 

1
2n .  

To illustrate the importance of the choice of normalization, we consider (Figure 7C) sums of 
n random variables from a gamma distribution with 2   and 1,   and a normalization of 

1
4n  

(column 1), of 
1
2n  (column 2) and of n  (column 3) for 1,2,4,16n   and 100 . When the 

normalization  is 
1
4n  (Figure 7C, column 1), we see that while the distribution is fairly symmetric 

by the time 16n   the value of the distribution at the mode is tending to infinity. At the other 
extreme when the normalization is n  (Figure 7C, column 3), the random behavior in the 
process is completely squashed by the time 16.n   In contrast, when the normalization is 

1
2n  

(Figure 7C, column 2), we see that the behavior of the process continues to become 
symmetric and it remains random as ,n  suggesting that 

1
2n  is the correct normalization.  
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Figure 7C. Rate of Convergence for the average of n  random draws from a gamma distribution with 2   

and 1   and a normalization of 
1
4n  (column 1), of 

1
2n  (column 2) and of n  (column 3). Reproduced from 

Dekking et al. (2002).  
 
E. Continuity Correction 
Suppose that X  is a discrete random variable taking on only integer values and that the pmf of 
X  is approximated as a Gaussian random variable with mean   and variance 2 . Then if a and 
b  are integers, the correction of continuity to use the Gaussian distribution is 
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 (7.31) 
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respectively. We applied the continuity correction in the Gaussian approximation to the Poisson 
distribution in Example 7.3. 
 
F. A More General Central Limit Theorem and an Example of Central Limit Behavior in a 
Physical System 
 
We can state a more general version of the Central Limit Theorem. 
 
Proposition 7.6. Central Limit Theorem (General). If 1 2, ,..., nX X X  are independent random 
variables, possibly having different distributions but with no individual iX  making a dominant 
contribution to the mean ,X  then for n  sufficiently large, the distribution of X  is approximately 
Gaussian with mean X  and standard deviation 1

2( ) .Var X  
 
 This version of the Central Limit Theorem helps to explain why the Gaussian distribution 
arises so often in statistical theory, and also why it seems to fit, at least roughly, so many 
observed phenomena. It says that whenever we average a large number of small independent 
effects, the result will be distributed as a Gaussian random variable. While the Central Limit 
Theorem involves the sample mean, it drives the large-sample behavior of most statistics: a 
statistic derived from a sample may usually be written, approximately, as some function 
(possibly a complicated function) of the sample mean, and that usually produces approximate 
Gaussian nature of the statistic itself. An important example is the maximum likelihood 
estimator, which is very widely used, and which we will discuss in Lecture 9. 
 
Example 3.2 Magnetoencephalography (continued). Why should the MEG measurements in 
Figure 3E be distributed as a Gaussian random variable? It is an empirical observation that 
when the magnetic field inside the shielded environment is measured at a given SQUID sensor 
the distribution of the background measurements is Gaussian. The central limit theorem offers a 
theoretical reason for this observation. To see this, we note that MEG measures the magnetic 
fields in a given location. Anywhere there are current dipoles magnetic fields are generated. The 
current dipoles that we are interested in are those emanating from the brain. Remember that 
magnetic fields or forces are a byproduct of electric currents or moving charged particles. In any 
environment there are always electric currents flowing around. The SQUID sensors are 
exquisitely sensitive. The fields they detect are on the order of 1510  Tesla (femtotesla). 
Therefore, if you imagine the local magnetic fields being recorded near a given SQUID sensor in 
a room designed to have a homogeneous magnetic field, there are a lot of local current 
fluctuations giving rise to local magnetic field fluctuations. If the environment is homogeneous, 
then no one local fluctuation will dominate (Lindeberg-Feller condition) and the local magnetic 
field is simply the vector sum of the local fluctuations. This later point gives the linear 
superposition. Hence, Gaussian structure is not surprising. Moreover, note that the observations 
are not independent (See Homework Assignment 6).  
 
IV. Summary 
The Law of Large Numbers states that as the number of observations in a sample of data 
increases the sample mean converges to the population mean whereas the Central Limit 
Theorem tells us that sums of random variables properly normalized can be approximated as a 
Gaussian distribution. This completes our section on probability theory. In the next half of the 
course we will study statistical theory and its application to several problems in brain and 
cognitive sciences making uses of the several results in probability theory we have developed.  
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