
      
   

 
    

 
       

 
         

 
      

 
         

 
        

 
           

 
       

 
          
 
    
 

        
        

    

 
 

            
              

   
 

     

 
              

               
               

 
 

  
          

           
            

 

9.07 Introduction to Statistics for Brain and Cognitive Sciences 
Emery N. Brown 

Lecture 9: Likelihood Methods 
I. Objectives 

1. Review the concept of the joint distribution of random variables. 

2. Understand the concept of the likelihood function. 

3. Understand the concept of maximum likelihood estimation. 

4. Understand the key properties of maximum likelihood estimation. 

5. Understand the concept of Fisher information. 

6. Understand how to compute the uncertainty in maximum likelihood estimates. 

II. Joint Probability Density or Distribution of a Set of Random Variables 

We recall that two events E1 and E2 are independent if 

Pr( E1 I E2) = Pr( E1) Pr( E2) (9.1) 

Intuitively, this statement says that knowledge about E1 gives no information about E2. In 
general a set of events E , ,K E is independent if 1 n 

n 

Pr( E1 I E2 K I  En ) = ∏Pr( Ei ) (9.2) 
i=1 

It follows from Lecture 1 and Lecture 5 that if = , ,K x is ax x  sample of independent, 1 n 
identically distributed observations from a pmf or a pdf ( | ) then the joint probability density f x  θi

1 K isof x x= , , xn 

n 

( | )  θ (  | )i θ . (9.3) f x  = ∏ f x  
i=1 

Equation 9.3 follows directly from the definition of a pmf for a discrete random variable. Using a 
cdf of a continuous random variable which is differentiable, it is also easy to show. Equation 9.3 
is essential for our definition of the likelihood function of a sample of independent observations. 

III. The Likelihood Function 
A. Definition 
Definition 9.1 (Likelihood Function). Given x x= , , x is an independent, identically 1 K n 
distributed sample from a pdf or pmf f x( | )i θ . Let ( | ) denote the joint pdf or pmf of the f x θ 
sample x = ( , ,  )x K x defined in Eq. 9.3. Given X = x is observed, the function of θ defined as 1 n 
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n 

L x (  | )  θ (9.4) ( )θ = f ( | )  θ = ∏ f xk 
k =1 

is called the likelihood function for the parameter θ . The likelihood function or likelihood 
provides an objective means of assessing the “information” in a sample of data about the model 
parameter θ . We view the data as fixed and now study L( )  x θ as a function of For a θ = f ( | )  θ . 
given model it summarizes all the information in the sample about θ . Use of the likelihood will 
allow us to overcome some of the ambiguities we faced with the method-of-moments. 

B. Examples of Likelihoods 
Example 2.1 (continued). Binomial Likelihood Function. In our learning experiment, we 
observed 22 correct responses from the animal in 40 trials. We derived the pmf of the 22 
observations in 40 trials as the binomial distribution 

⎛ 40⎞ 22 18f (22 | p) = ⎜ ⎟ p (1 − p) . (9.5) 
22⎝ ⎠ 

(Notice that this distribution does not have exactly the same form as Eq. 9.3, because we 
allowed for all the possible ways the sample could be realized. It turns out that in our likelihood 
analysis, this distinction will not matter because the binomial coefficient does not alter the 
likelihood). Since the unknown parameter is p we have the likelihood of p is 

⎛ 40⎞ 22 18L p  (9.6) ( )  = f (22  |  p) = ⎜ ⎟ p (1  − p) .
22⎝ ⎠ 

In general, for the binomial pmf with n trials and probability of a correct response p, the 
likelihood 

n⎛ ⎞ x  n x  ( )= ( |  )  = ⎜ ⎟ p 1− p) . (9.7) L p  f x p  ( − 

x⎝ ⎠  
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Figure 9A. Binomial Likelihood Function L(p) for n = 40 and k = 5, 10, 22, 30, 35. 

Plotting these elementary likelihood functions is useful to gain insight into what type of 
information they provide. We can predict the shape of the binomial likelihood function based on 
discussions of the beta distribution in Lecture 3 (Eq. 3.30, Figure 3J). 

Example 3.2 Quantile Release Hypothesis (Poisson Likelihood). We used a Poisson pmf to 
model the quantile release of acetylcholine at the synapse. If we record the number of quanta 
released in n non-overlapping time intervals of a specified length, then the likelihood function for 
the Poisson parameter λ, which is the expected number of quanta released, is 

n x −λλ e( )= f ( |  )  λ = ∏ 
i 

L λ x 
x !ii=1 

∑ 
n 
xi (9.8) 

i=1 −nλλ e = 

∏	 
n 

xi ! 
i=1 

We see in this example, a very important feature of the likelihood. Namely, that it has reduced 
n 

or summarized the data from all n observations to simply Sn = ∑ xi , the sum of the n 
i=1 

observations. For a large class of probability models, this is a typical feature. 
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Figure 9B Poisson Likelihood Functions L( )λ . 

The shape of the Poisson likelihood could be predicted based on results in Lecture 3. Note that 
the essential features of this likelihood are described by 

S −nλnL( )∝λ (9.9) λ e 

which is proportional to a gamma probability density (Eq. 3.26) with α = (S −1)  and β = nn
(Figure 3I). 

Example 3.2 (continued) Magnetoencephalogram Noise Data (Gaussian Likelihood 
Function). If we view the MEG data as a random sample from a Gaussian probability model 

2then in this problem there are two unknown parameters: µ and σ . 
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2 2( ,  )  = f x  | µ,σ )L µ σ ( 

∏ 
n

i 
2= f x( |  µ,σ ) 

i=1 
n	 2⎛ 1 ⎞ 

1
2 ⎧⎪	 (x − µ) ⎫⎪ = exp ⎨− i ⎬∏⎜ 2 ⎟ 2⎝ 2πσ ⎠ ⎪ 2σ ⎪	 (9.10) 

i=1	 ⎩ ⎭ 
n⎧ ⎫2 

1 
n 
2 

⎪ ∑ (xi − µ) ⎪ 
⎛ ⎞ ⎪ i=1 ⎪ = exp ⎨−⎜ ⎟	 ⎬
⎝ 2πσ 2 ⎠ 2σ 2⎪ ⎪ 

⎪ ⎪
⎩ ⎭ 

If we expand the sum in the exponent, we see that the data have been compressed into 
n n 

two distinct terms: ∑ xi and ∑ xi 
2. That is, we can rewrite Eq. 9.10 as 

i=1 i=1 
n n 2 

2 2 2⎪ 1	 µ n ⎡ µ ⎤⎪L( ,  ) exp⎨
⎧
− ∑xi + ∑xi − ⎢log(2πσ  )+ ⎥⎬  

⎫ 
µ σ = 2 2	 2⎪ 2σ σ 2 σ ⎪⎩ i=1 i=1 ⎣ ⎦⎭ 

A crucial feature is that the coefficients on these two statistics involve the unknown 
parameters. This data reduction is an important consequence of the likelihood analysis. These 
statistics are called sufficient statistics in that it is possible to show that they contain all the 

2information in the data about the parameters µ and σ . We state this concept formally. 

Definition 9.2 A statistic ( ) 	 if the probability density of the T X  is sufficient for a parameter θ 
data conditional on the statistic is independent of θ . That is, if f X( , . ,  | ( ) )  ( )h X  , then . . X  T X  ,θ =1 n 
T X is sufficient.( )

If there are two parameters, then the smallest number of sufficient statistics is two. Similarly, in 
the case of the Poisson likelihood above, the number of sufficient statistics was one consistent 
with the fact that there is only one parameter to estimate. There are very precise theorems that 
tell us how to identify the sufficient statistics for parameters in a probability model. We will not 
discuss them here. Details can be found in Pawitan (2001), DeGroot and Schervish (2002) and 
in Rice (2007). 

Likelihood analyses in general are based on the sufficient statistics. When method-of-
moments and likelihood analyses differ, it is usually because the sample moments are not the 
sufficient statistics for the parameters to be estimated. We will illustrate this point below when 
we define maximum likelihood estimation. 

C. Maximum Likelihood Estimation 
Ideally, we would like to analyze the likelihood function for every problem. This gets to 

be especially challenging when the number of parameters is large. Therefore, we would like to 
derive a summary that gives us a sense about the shape of the likelihood. This is what the 
maximum likelihood estimate and the Fisher information provide. We describe them in turn. 
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Definition 9.3. Maximum Likelihood Estimation. For each sample point x = ( ,x ..,  ) let θ̂ ( )1 . xn x 
be a parameter value of which L( )  θ x attains a maximum as a function of θ for fixed x.θ = L( | )  
ˆ x is a maximum likelihood (ML) estimator (MLE) of the parameter θ .θ ( )

∂ ( )L θIn particular, if L( )θ is differentiable, we can consider = 0 and check the conditions 
∂θ 

2∂ L( )θ on to be sure that the estimate defines a maximum. Remember that this would mean 
∂θ 2 

that for a one-dimensional problem, verifying that the second derivative was negative and for 
the d − dimensional problem verifying the condition that the determinant of the Hessian is 
negative definite. In likelihood analyses, it is usually easier to work with log L( )θ instead of ( ).L θ 

∂ log L( )θThe function is called the score function. Hence, computing the MLE can often be 
∂θ 

formulated as finding θ̂  which solves the score equation 

∂ log ( ) L θ = 0. (9.11) 
∂θ 

Two challenging problems for finding maximum likelihood estimates of parameters in complex 
high dimensional models is finding the solution to Eq. 9.11 numerically and establishing that this 
solution achieves a global maximum. 

Example 9.1. Suppose that x , , x are independent, identically distributed observations from 1 K n 
a gamma distribution with parameters α and β . If α is known then we have the likelihood 
function is 

n βα 
α−1 −β x( ,  )  = ∏ α 
xk e kL α β  

Γ( )k =1 (9.12) 
nα n n 

= β 
n exp{( α −1) ∑ log xk − β∑ xk }Γ( )α k =1 k =1 

and the log likelihood function is 

n n 

log L( , ) = −n log Γ( ) α + n log β + ( −1) ∑log( xk ) − β∑ kα β  α α  x (9.13) 
k=1 k=1 

Differentiating with respect to β 

∑ 
n

k 
∂ log L(α β, ) nα = − x (9.14) 

∂β β k =1 

and solving yields 
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α0 = − x (9.15) 
β 

β̂ = α . (9.16) 
x 

Notice also that if α is known, then the second derivative of the log likelihood evaluated at β̂ is 

2 α β )∂ log L( , nα nx = − = −ˆ2∂β 2 β̂ β α 

This is clearly negative sinceα is positive and x is positive. Hence, the log likelihood (and the 
likelihood) is maximized at β̂ . If α = 1 we have β̂ = x−1 is the maximum likelihood estimate for an 
exponential model. 

If α is unknown, then there is no closed form solution for either α or β . The estimates 
must then be found numerically. To see this we differentiate Eq. 9.13 with respect to α to obtain 
the log likelihood for α 

∂ log L( , ) Γ′( ) α β  α  n 

= −n + n log β + log( x ) (9.17) 
α Γ( )∂ α ∑ k 

k=1 

Substituting for β from Eq. 9.16 we obtain 

log L( ) Γ′( ) α∂ α α n 

= −n + n log + ∑log( xk ) (9.18) 
∂ Γ( )  xα α k =1 

Setting the left hand side of Eq. 9.18 equal to zero and solving for the MLE of α requires a 
numerical procedure such as Newton’s method. Plausible starting values for computing the ML 
estimates can be obtained from the method-of-moments estimates. We can see in this case that 
the method-of-moments estimates and the maximum likelihood estimates are different. The 
distinction between the maximum likelihood and the method-of-moments estimates comes 

n 
about because for the gamma distribution, the sufficient statistics for α and β are ∑log( xk ) 

k =1 
n 

and ∑ xk . This is suggested by how the likelihood summarizes the data sample as indicated by 
k =1 

the terms in the log likelihood function in Eq. 9.13. Given the definition of the sufficient statistics, 
this shows that the simple method-of-moments estimates are not “efficient” (i.e., they must have 
some loss of information). We will make this concept more precise below. 

Example 3.2 (continued) Let , , x be a random sample of MEG background noise believed x1 K n 
2to obey a Gaussian probability density with unknown µ and σ . It is easy to show that 

−1 2 −1 2= is the maximum likelihood (ML) estimate of µ ˆ ) is the x n  
n
xk and σ = n

n 
(xk − x∑k=1 ∑k =1 

2maximum likelihood estimate of σ . This is straightforward to show by differentiating the 
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2Gaussian log likelihood, equating the gradient to zero and solving for µ and σ . Here the 
method-of-moments and the maximum likelihood estimates are the same. In this case, the 
sufficient statistics are the first two sample moments. 
Example 9.2. Inverse Gaussian Distribution. If , , x is a random sample from an inverse x1 K n 
Gaussian distribution with parameters µ and λ, then the likelihood is 

1  
n 2 2 ⎛ λ ⎞ ⎪⎧ λ(x − µ) ⎪⎫kL(µ,λ) = ∏⎜⎜ 3 ⎟⎟ exp ⎨− 2 ⎬  
k =1 ⎝ 2π xk ⎠ ⎪⎩ 2xk µ ⎪⎭  
n 2 n 2⎛ λ ⎞ 

1 

⎧⎪ λ(x − µ) ⎫⎪ = ⎜ ⎟ exp ⎨− k ⎬ (9.19) ∏⎜ 3 ⎟ ∑ 22π x 2x µk =1 ⎝ k ⎠ ⎩⎪ k =1 k ⎪⎭ 
n n n⎧ ⎡ ⎤⎫⎪ 1 λ −1 ⎡ ⎛ λ ⎞ λ ⎤ 3 ⎪ = exp ⎨− ⎢ 2 ∑ xk + λ∑ xk − n ⎢log ⎜ ⎟ + 2 ⎥ + ∑ log xk ⎥⎬. 2 µ ⎣ ⎝ 2π ⎠ µ ⎦⎪ ⎣⎢ k =1 k =1 k =1 ⎥⎦⎪⎩ ⎭ 

Recall that for this probability model the mean is µ and the variance is λµ3 / . What are the 
maximum likelihood estimates of µ and λ ? Are they the same as the method-of-moments 
estimate? The maximum likelihood estimates are 

n 

µ̂ML = n−1∑xi (9.20) 
i=1 

n 
−1 −1 1 1λ̂ML = n ∑( − ) (9.21) 

x µ̂i=1 i  ML  

whereas the method-of-moments estimates are 

n 

µ̂MM = n−1∑xi (9.22) 
i=1 

ˆ 3 2λ = x /σ̂ . (9.23) MM 

Can you venture a guess as to what are the sufficient statistics for µ and λ ? (Remember the 
maximum likelihood estimates are always functions of the sufficient statistics. If you can derive 
the last line in Eq. 9.19, then the extra credit problem on Homework Assignment 7 is 
straightforward). 

Invariance Property of the Maximum Likelihood Estimator. Suppose that a distribution is 
indexed by a parameter θ . Let T ( )θ be a function of θ , then if ˆ is the maximum likelihood θML 
estimator of θ then T(θ̂ML ) is the maximum likelihood estimate of ( ). For example, if θ λ,T θ = 

the scale parameter of the inverse Gaussian distribution the MLE ˆ is given in Eq. 9.21. If we λML 
are interested in T( )  cλ = s λ then the MLE of T ( )λ is ( ˆ This is one of the most important 
properties of maximum likelihood estimates. 

o ( )  T λML ).  
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D. Fisher Information (Pawitan, 2001). 
The MLE provides a point (or single number summary) estimate. “In general a single number is 
not sufficient to represent a likelihood function. If the log likelihood is well approximated by a 
quadratic function, then we need at least two quantities to represent it: the location of its 
maximum the (MLE) and the curvature at the maximum.” The curvature will be the Fisher 
information. When this quadratic approximation is valid we call the likelihood function regular. 
Fortunately, when sample sizes are sufficiently large, the likelihood function generally does 
become regular. To restate this critical requirement, regular problems are those in which we can 
approximate the log likelihood function around the MLE by a quadratic function. 

To define the Fisher information we first recall how we compute the Taylor series 
expansion of a function. The Taylor series expansion of a function f x  about a point is( ) x0 
defined as 

f x''( 0 )( − 0
2x x  )

( )  = ( 0 ) + f x  ' 0 )(  x x  − 0) + + ....  (9.24) f x  f x  ( 
2! 

Let us assume that our log likelihood function is differentiable and let us expand the log 
likelihood function in a Taylor series about the ML estimate ˆ This gives θML. 

ˆ ˆ 2log L(θML ) ''(θ −θML )θ ˆ ˆ ˆ (9.25) log L( ) = log L(θML ) + log L(θML ) '(θ −θML ) + + ... 
2! 

Because log L(θ̂ML ) ' = 0 since θ̂ML is the ML estimate of θ , we obtain 

ˆ ˆ 2 
ˆ log L(θML ) ''(θ −θML )log L( ) ≈ log L( ML ) + . (9.26) θ θ 

2! 

Therefore, we can approximate L( )θ for θ close to θ̂  as 

L( ) ≈ ( ˆML )e p − 12 I (θ̂ML ( −θ̂ML 
2 (9.27) θ L θ x { ) θ ) }  

where 

I (θ̂ ) = −log  L(θ̂  )".  (9.28) ML ML 

is the observed Fisher information. It is a number because it is evaluated at the MLE. I (θ̂ML ) 
measures the curvature of the likelihood around the MLE. Eq. 9.27 implies that near the MLE 
the likelihood can be approximated as a Gaussian distribution. We can gain intuition about the 
meaning of the Fisher information by considering the following Gaussian example. 

Example 3.2 (continued). If we assume σ 2 is known, then ignoring irrelevant constants we get 

n1
2 ∑ 2log L( ) µ = − (xi −µ) (9.29) 

2σ i=1 
and 
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nlog L( ) 1∂ µ = (xi − µ) (9.30) 
∂µ σ 2 ∑ 

i=1 

∂2 log L( ) µ n 
2 = − 2 

(9.31) 
∂µ σ 

n −1 2  −1( )  Hence, ( ) Thus a key point is: A large amount I µ µ ˆThus ˆ = 2 . V ar( ) ˆ = n σ = I µ . of 
σ 

information implies smaller variance. 

Example 2.1 (continued). For the binomial model of the learning experiment, the log likelihood 
and score functions (ignoring irrelevant constants) are 

log ( ) = k log p+ (n k  ) log(1 L p  − − p) (9.32) 

∂ log L p( ) k  n k  − = − (9.33) 
∂p p 1− p 

The MLE is 

k p̂ = (9.34) 
n 

and 

∂2 log L p( ) k  n k  −I p( )  = − = + (9.35) 
2 2 2∂p p (1− p) 

so that at the MLE the observed Fisher information is 

nI p  (9.36) ( )ˆ = . 
p̂(1 − p̂) 

See the Addendum 1 to Lecture 9 to understand the details of the last step. 

Remark 9.1. In principle, we can judge the quadratic approximation to the log likelihood by 
plotting the true log likelihood with the quadratic approximation superimposed. 

Remark 9.2. For the Gaussian distribution from Example 3.2, the quadratic approximation is 
exact. A practical rule for nearly all likelihood applications: a reasonably regular likelihood 
means ˆ is approximately Gaussian. θML 

Remark 9.3. The result in Eq. 9.27 suggests that an approximate 95% confidence interval for θ 
may be constructed as 

ˆ 2 (θ̂ ) (9.37) θ ± seML ML 
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− 12where se( ˆML ) = [ ( θ̂ML )] .θ I 

Remark 9.4. Reporting θ̂ML and I (θ̂ML ) is a practical alternative to plotting the likelihood 
function in every problem. 

The quantity we derived above was the observed Fisher information. It is an estimate of the 
Fisher information which we define below. 

Definition 9.4. If = 1,..., x is a sample with joint probability density , then the Fisher x x  f x( | )θn 
information in x for the parameter θ is 

log ( | θ ) 2∂ f xI ( )  = E[θ ]
∂θ (9.38) 

log ( | ) θ 2∂ f x  = [ ] f x θ .( | )  dx∫ ∂θ 

Equivalently, 

θ 
2 log ( | θ )∂ f xI ( )  = −E[ 2 ]

∂θ (9.39) 
2 log ( | θ )∂ f x∫ ∂θ 2 

f x  x= − ( | )  θ d . 

Now that we have defined the Fisher information we can use it to make an important general 
statement about the performance of an estimator. 

Theorem 9.1 (Cramer-Rao Lower Bound). Suppose x x , ,K x is a sample from f x( | )θ ,and= 1 n 

T x( ) is an estimator of θ and [( ( ))]xE T is a differentiable function of θ . Suppose also that θ 

d d ( | )  f x  θ( ) ( |  )  d = h x( )  x (9.40) h x f  x  θ x d ,
dθ ∫ ∫ dθ 

for all ( ) E h xh x  with ( ) < ∞. Then θ 

dEθ ( ( ))  2T x ( )
dθV ar( ( )) T x  ≥ . (9.41) 
log ( | ) θ 2∂ f xEθ ( )

∂θ 

Equation 9.41 is the Cramer-Rao Lower Bound (CRLB) for the estimator ( )T x . For a proof see 
Casella and Berger (1990). 

CRLB gives the lowest bound on the variance of an estimator. If the estimate is unbiased, then 
the numerator is 1 and the denominator is the Fisher information. If θ is a d ×1 vector then the 
Fisher information is a d d matrix given by × 
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log ( | θ )T ∂ log ( | ) ∂2 log f x( | θ)∂ f x  f x θ( )  = Eθ [(  
θ 

] = −Eθ [ ∂ ∂  
I θ ].  (9.42) 

∂θ ∂ θ θT 

We will make extensive use of the Fisher information to derive confidence intervals for our 
estimates and to make inferences in our problems. 

E. Criteria for Evaluating an Estimator 
T x  is an estimator of then there are several criteria that can be used to evaluate its 

performance. Four commonly used criteria to evaluate the performance of estimators are: 
If ( ) θ , 

1. Mean-Squared Error (MSE) 
E T x −θ 2θ [ ( )  ]

The smaller the MSE the better the estimator. 

2. Unbiasedness 
θ ( ( )) =θE T x

The bias of an estimator is bT ( )θ = E T  x  )  
An estimator is unbiased if its expected value is the parameter it estimates.  

( ( ) −θ. 

3. Consistency 
pT x( )⎯⎯→θ as n →∞  

Consistency means that as the sample size increases the estimator converges in mean-squared 
error, probability or almost surely to the true value of the parameter. 

4. Efficiency Achieves a minimum variance (Cramer-Rao Lower Bound).  
The efficiency of an estimator is usually characterized in terms of its variance relative to another  
estimator. The Cramer-Rao Lower bound gives a characterization of how small the variance of  
an estimator can be.  

F. Summary of Key Properties of Maximum Likelihood Estimation 
1. Maximum likelihood estimates are generally biased. 

2. Maximum likelihood estimates are consistent, hence, they are asymptotically unbiased. 

3. Maximum likelihood estimates are asymptotically efficient. 

4. The variance of the maximum likelihood estimate may be approximated by the reciprocal 
(inverse) of the Fisher information. 

5. The maximum likelihood estimate θ̂ML is asymptotically Gaussian with mean θ and variance 
I( )  .θ − 1 
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6. If θ̂ML is the maximum likelihood estimate of θ then h(θ̂ML ) is the maximum likelihood 
estimate of h( )θ . 

7. Given that θ̂  N( , ( )  )θ − by the Invariance Principle for the MLE and a Taylor Series 
expansion we have 

ML : θ I 1 , 

2 −1h(θ̂ ) ≈ N h  θ h ' θ I θ )ML ( ( ),  ( ) [ ( )]  (9.43) 

and an approximate 95% confidence interval for h( )θ is 

2h( ˆ ) ±1.96h ' θ̂ML )[ ( ˆML )] 
− 1 . (9.44) θML ( I θ 

See Addendum 2 to Lecture 9 for an explanation and illustration of this result. 

III. Summary 
The likelihood function and maximum likelihood estimation are two of the most important 
theoretical and practical concepts in statistics. 
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