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Spatial receptive fields 
• How do we represent receptive fields mathematically? 

Linear-Nonlinear Model (LN Model) 

output spike 
filter x nonlinearity generator 

y 

I(x, y) L = [G I( )y, x ] [r = r0 + L]+ PT [n] 
Stimulus Poisson 

process 
Response Stimulus Firing rate Spatial 

filter 
Image of mouse in public domain.	 
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Spatial receptive fields 
• How do we represent receptive fields mathematically? 

We are going to consider the simplest case in which the response 
of a neuron is given by a linear filter acting on the stimulus. 

r = r0 + ∫∫G(x, y)I(x, y)dx dy 

Let’s look at this in one dimension 

x 

y 
G(x, y) 

G(x) 
x 
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r = r0 + ∫G(x)I(x)dx 



     

Spatial receptive fields 
• How do we represent receptive fields mathematically? 

G(x) 

x 

x 

I(x) 

G(x)I(x) 
x 

G(x)I(x) 

G(x) 

I(x) 

∫G(x)I(x)dx big ∫G(x)I(x)dx small 4 



            
  

 

Temporal receptive fields 

• We can also think of the response of a neuron as some 
function of the temporal variations in the stimulus. 

r(t) = r0 + D[S(t)] 
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Temporal receptive fields 
• We can think of ‘overlap’ in the time domain! That there 

is a particular ‘temporal profile’ of a stimulus that makes a 
neuron spike. 

Stimulus S(t) 
time 

Linear Response 

Kernel 
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Spatio-temporal receptive fields 
• How do we represent receptive fields mathematically? 

Combine neural responses into a single kernel that captures 
both spatial and temporal sensitivity. 

output spike 
filter x nonlinearity generator 

y 

I(x, y,t) L( ) t = K [I( ,y, x t)] r(t) = [r0 + L(t)]+ PT [n] 
Stimulus Poisson 

process 
Response Spatio- Stimulus Firing rate 

temporal 
Image of mouse in public domain.	 filter 

7 



 

   

       

 

    
 

      

Learning objectives for Lecture 10 

• Spike trains are probabilistic (Poisson Process) 

• Be able to use measures of spike train variability 
– Fano Factor 
– Interspike Interval (ISI) 

• Understand convolution, cross-correlation, and 
autocorrelation functions 

• Understand the concept of a Fourier series 
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Learning objectives for Lecture 10 

• Spike trains are probabilistic (Poisson Process) 

• Be able to use measures of spike train variability 
– Fano Factor 
– Interspike Interval (ISI) 

• Understand convolution, cross-correlation, and 
autocorrelation functions 

• Understand the concept of a Fourier series 
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Neuronal responses are variable 
• Spike trains are often quite variable. The precise pattern of 

spikes on each presentation of a stimulus is different. 

Stimulus 

time 

100 ms 

Figure courtesy MIT Press. From Dayan,	 P. and L. Abbott. Theoretical Neuroscience: Computational and 
Mathematical Modeling of Neural Systems. 2001. Original source: Bair,	 W. and C. Koch.	 “Temporal Precision 
of	 Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey.” Neural Computation 8	 no 6	 (1996): 
1185-1202. 

Response of a neuron in area MT of the monkey to 
the exact same stimulus replayed on each trial. 10 



     
          

             

         

 

               

Neuronal responses are variable 
Stimulus 

time 

001000101000001010010010 

Δt 

Imagine a random process that produces spikes at an average rate of       spikes 
per second during the stimulus presentation. µ 

Break up the spike train into small time bins of some duration Δt. Each spike is 
generated independently of other spikes and with equal probability in each bin. then 
we can write the probability that a spike occurs in any bin as 

If Δt is small enough that most of the bins have zero spikes, we can write the 
probability that a spike occurs in any bin as: µ ⋅ Δt 

The probability that no spike occurs in the bin is: 1− µ ⋅ Δt 11 



         

              

      
         

       

           

Poisson process 
T 

time 

M bins 001000101000001010010010 

Δt 

How many spikes land in the interval T ? 

What is the probability that n spikes land in the interval T ? PT [n] 
This is just the product of three things: 

– The probability of having n bins with a spike = (µ Δt)n 

– The probability of having M-n bins with no spike = (1− µ Δt)M −n 

M ! 
– The number of different ways to distribution n spikes in M bins = 

(M − n)!n! 12 



              

   

Poisson process 
What is the probability that n spikes land in the interval T ? 

M ! PT [n] = lim 
Δt→0 (M − n)!n! 

(µ Δt)n (1− µ Δt)M −n 

T 
In the limit that: Δt → 0 M = →∞ 

Δt 

PT [n] = 
(µT )n 

n! 
e− µT 

Poisson distribution! 
13 



Poisson distribution
The Poisson Distribution gives us the probability that n 
spikes land in the interval T  

PT [n] =
(µT )n

n!
e−µT

n = nPT [n]
n=0

∞

∑ = µT

Average (expected) number of spikes

Thus,                 is also the average

spike rate! (going to use variable r)

µ =
n
T

n

n = 1
n = 4
n = 10

PT [n]

14
Poisson	distribution	plot	courtesy	of	Skbkekas	on	Wikimedia.	License:	CC	BY.



Learning objectives for Lecture 10

• Spike trains are probabilistic (Poisson Process)

• Be able to use measures of spike train variability
– Fano Factor
– Interspike Interval (ISI)

• Understand convolution, cross-correlation, and 
autocorrelation functions

• Understand the concept of a Fourier series
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Spike count variability
What is the variance in the number of spikes that land in the 
interval T ?  

PT [n] =
(µT )n

n!
e−µT

σn
2 (T ) = n − n( )2

= n2 − 2 n 2 + n 2

= n2 − n 2

σn
2 (T ) = µT

Variance in spike count Fano Factor

F = σn
2 (T )
n

= 1
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Interspike interval (ISI) distribution
What is the distribution of intervals between spikes?
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ti ti+1

Δtτi
τi = ti+1 − ti

The probability of having the next spike land in the interval 
between            and                    is:ti+1 ti+1 + Δt

P[τ ≤ ti+1 − ti < τ + Δt] =

Pτ [n = 0] =
(rτ )0

0!
e−rτ = e−rτ

e−rτ rΔt



Interspike interval (ISI) distribution
What is the distribution of intervals between spikes?

18

ti ti+1

Δtτi
τi = ti+1 − ti

The probability density (probability per unit time) is just

1
Δt
P[τ ] = r e−rτ

Interval τ

1/ e

r

r−1



Homogeneous vs inhomogeneous 
Poisson process

time

Stimulus

100 ms

rate = µ

Homogeneous 

rate = µ(t)

Inhomogeneous 

Annotated figure from	Dayan,	P.	and	L.	Abbott.	Theoretical	Neuroscience:	Computational	and	Mathematical	Modeling	of	Neural	Systems.	2001.	Original	source:	Bair,	W.	and 
C.	Koch.	“Temporal	Precision	of	Spike	Trains	in	Extrastriate Cortex	of	the	Behaving	Macaque	Monkey.”	Neural	Computation	8	no	6	(1996):	1185-1202. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 19



Learning objectives for Lecture 10

• Spike trains are probabilistic (Poisson Process)

• Be able to use measures of spike train variability
– Fano Factor
– Interspike Interval (ISI)

• Understand convolution, cross-correlation, and
autocorrelation functions

• Understand the concept of a Fourier series
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Convolution
• We have discussed the idea of convolution

y(t) = dτ G(τ )x(t −τ )
−∞

∞

∫

– To model the response of membrane potential to synaptic input

– To model the response of neurons to a time-dependent stimulus

– To implement a low-pass or high-pass filter

21

• In general, convolution allows us to model the output of a system as
a linear filter acting on its input.



Cross-correlation function
• A way to examine the temporal relation between signals.

22

K(τ ) = dt x(t)y(t +τ )
−∞

∞

∫

x(t)

y(t)

Time Lag

xc=xcorr(ShftNoisyData,NoisyData,Nlags);

 K = x  y



Relation between Convolution and Cross-
correlation

• These are mathematically very similar, but are used differently.
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Think of                       as long vectors (signals)x(t) and y(t)

Think of          as a short vector (kernel) K(τ )

y(t) = dτ K(τ )x(t −τ )
−∞

∞

∫

Convolution

Take input signal           and 
convolve it with kernel K to get 
output signal         . 

x(t)

y(t)

K(τ ) = dt x(t)y(t +τ )
−∞

∞

∫

Cross-correlation

Take two signals,                       , 
and cross-correlate to extract a 
temporal ‘kernel’ K.

x(t) and y(t)

Relation to STA



Autocorrelation

K(τ ) = dt x(t)x(t +τ )
−∞

∞

∫

• A way to examine the temporal structure within a signal.

24

50 ms



Autocorrelation
• A way to examine the temporal structure within a signal.

xcRaw=xcorr(Data,Nlags);
50 ms

Time

Time Lag

~100 ms
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Autocorrelation

K(τ ) = dt x(t)x(t +τ )
−∞

∞

∫

• A way to examine the temporal structure within a signal.

50 ms
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Autocorrelation
• A way to examine the temporal structure within a signal.

xcRaw=xcorr(Data,Nlags);
50 ms

Time

Time Lag

100 ms

27

Time

1 ms

Time Lag



Autocorrelation
• A way to examine the temporal structure within a signal.

50 ms
Data	=	randn(1,N)+0.1*cos(2*pi*10*time);

Time

28Time Lag

100 ms



Learning objectives for Lecture 10

• Spike trains are probabilistic (Poisson Process)

• Be able to use measures of spike train variability
– Fano Factor
– Interspike Interval (ISI)

• Understand convolution, cross-correlation, and 
autocorrelation functions

• Understand the concept of a Fourier series
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S( f ,t)

A spectrogram shows how much power there is in a sound at 
different frequencies and at different times.

Spectral Analysis



Spectral Analysis

31

Time

Fr
eq

ue
nc

y 
(H

z)

100 ms

Babbling baby bird

Time

Fr
eq

ue
nc

y 
(H

z)

Time

Hippocampal theta rhythm

100 ms



Fourier Series

a1 cos 2π f0t( )

32

• We can express any periodic function of time as sums of sine and
cosine functions.

We could approximate this square wave with a cosine wave of the 
same period T and amplitude.

Oscillation frequency 

f0 =
1
T

Cycles per second (Hz)

ω0 =
2π
T

Angular frequency   

Radians per second

• Let’s start with an even function that is periodic with a period T

t

T



cos ω0t( )

t

33

cos 2ω0t( )

cos 3ω0t( )

• But we can get a better approximation if we add some more cosine 
waves to our original one…

Fourier Series

T

Why can we restrict ourselves to only frequencies that are integer 
multiples of ω0 ?

Because only cosines that are integer multiples of ω0 are periodic with 
a period T!



cos ω0t( )

cos 2ω0t( )

cos 3ω0t( )

t

34

Fourier Series

T

y(t) = a1 cos ω0t( ) + a2 cos 2ω0t( ) + a3 cos 3ω0t( ) + ...

• But we can get a better approximation if we add some more cosine
waves to our original one…
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Fourier Series

cos ω0t( )

cos 3ω0t( )

cos 5ω0t( )

cos 7ω0t( )

cos 9ω0t( )

cos 11ω0t( )

cos 13ω0t( )
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Fourier Series

cos nω0t( )n =
1
2
3
4
5
6
7
8
9

10
11
12
13

constructive 
interference

constructive 
interference

destructive 
interference

destructive 
interference



cos ω0t( )

cos 2ω0t( )

cos 3ω0t( )

t

37

Fourier Series

T

y(t) = a1 cos ω0t( ) + a2 cos 2ω0t( ) + a3 cos 3ω0t( ) + ...

yeven (t) =
a0
2
+ an cos nω0t( )

n=1

∞

∑DC term

a0
2

+



How do we find the coefficients?

38

a0
2
=
1
T

y(t)dt
−T /2

T /2

∫

• The      coefficient is just like the average of our function y(t).a0

• The       coefficient is just the overlap of our function y(t)  witha1

a1 =
2
T

y(t)cos ω0t( )dt
−T /2

T /2

∫

cos ω0t( )

• The       coefficient is just the overlap of our function y(t)  witha2

a2 =
2
T

y(t)cos 2ω0t( )dt
−T /2

T /2

∫

cos 2ω0t( )

a0 =
2
T

y(t)cos(0ω0t)dt
−T /2

T /2

∫

• The       coefficient is just the overlap of our function y(t)  withan

an =
2
T

y(t)cos nω0t( )dt
−T /2

T /2

∫

cos nω0t( )

Correlation!
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a0 =
2
T

y(t)dt
−T /2

T /2

∫ a1 =
2
T

y(t)cos ω0t( )dt
−T /2

T /2

∫ a2 =
2
T

y(t)cos 2ω0t( )dt
−T /2

T /2

∫

Consider the following functions y(t):

y(t) = 1 a0 = 2 a1 = 0 a2 = 0

y(t) = cos(ω0t) a0 = 0 a1 = 1 a2 = 0

y(t) = cos(2ω0t) a0 = 0 a1 = 0 a2 = 1

y(t) = a0
2

+ a1 cos ω0t( ) + a2 cos 2ω0t( ) + ...

cos ω0t( )cos 2ω0t( )dt
−T /2

T /2

∫ = 0cos ω0t( )⎡⎣ ⎤⎦
2dt

−T /2

T /2

∫ = T
2

How do we find the coefficients?



Fourier Series
• If a function has maximal overlap with one of our cosine functions, 

then it has zero overlap with all the others! 

40

x̂1

 
v

x̂2

a1 x̂1

a2 x̂2

 
v = a1 x̂1 + a2 x̂2

 a2 =
v ⋅ x̂2

How do we find the coefficients a1 and a2?

 a1 =
v ⋅ x̂1

x̂2 = [1 , 0]

x̂1 = [0 , 1]

 
!v = [a1 , a2 ]

= vix1
i

i
∑ = vi

i
∑ x2

i

• We say that our set of cosine functions form an orthogonal basis set…
un (t) = cos(nω0t)

a1 =
2
T

y(t)cos ω0t( )dt
−T /2

T /2

∫



Fourier Series
• Now let’s look an an odd (antisymmetric) function…

T

sin 2π
T
t⎛

⎝⎜
⎞
⎠⎟sin ω0t( ) =

sin 2ω0t( )
sin 3ω0t( )

yodd (t) = b1 sin ω0t( ) + b2 sin 2ω0t( ) + b3 sin 3ω0t( ) + ... yodd (t) = bn sin nω0t( )
n=1

∞

∑
41Why is there no DC term here?



Fourier Series
• For an arbitrary function, we can write it down as the 

sum of a symmetric and an antisymmetric part.

y(t) = a0
2

+ an cos nω0t( ) +
n=1

∞

∑ bn sin nω0t( )
n=1

∞

∑

symmetric antisymmetric

42



Complex Fourier Series
• We can express any periodic function of time as sums of

complex exponentials.

eiω t = cosω t + i sinω t

e− iω t = cosω t − i sinω t

θ(t) =ωt

θ

Euler’s formula

1
i
= −i

cosωt = 1
2
eiωt +e− iωt( )

sinωt = 1
2i

eiωt −e− iωt( )

Rewrite as follows…

= − i
2
eiωt −e− iωt( )

Re eiωt⎡⎣ ⎤⎦

Im eiωt⎡⎣ ⎤⎦

43



Fourier Series

y(t) = a0
2

+ an cos nω0t( ) +
n=1

∞

∑ bn sin nω0t( )
n=1

∞

∑

44

y(t) = A0 + An e
inω0 t

n=1

∞

∑ + A−ne
− i nω0 t

n=1

∞

∑
‘DC’ or

‘constant’ 
term

positive 
frequencies

negative
frequencies

An =
1
2
an − ibn( ) A−n =

1
2
an + ibn( )A0 =

a0
2 An = A−n( )*

complex conjugates

y(t) = a0
2

+ an
2
einωt +e− inωt( ) +

n=1

∞

∑ −ibn
2

einωt −e− inωt( )
n=1

∞

∑



Complex Fourier Series

• We can write this more compactly as follows:

y(t) = Ane
inω0t

n=−∞

∞

∑

For n = 0,
einω0t = e0 = 1

y(t) = A0 + An e
inω0 t

n=1

∞

∑ + A−ne
− i nω0 t

n=1

∞

∑

45

= An e
inω0 t

n=0
∑ + An e

inω0 t

n=1

∞

∑ + Ane
inω0 t

n=−1

−∞

∑



Learning objectives for Lecture 10

• Spike trains are probabilistic (Poisson Process)

• Be able to use measures of spike train variability
– Fano Factor
– Interspike Interval (ISI)

• Understand convolution, cross-correlation, and
autocorrelation functions

• Understand the concept of a Fourier series

46



Extra Slides on Poisson process

How many spikes land in the interval T ? 

What is the probability that n spikes land in the interval T ? 

time

001000101000001010010010

Δt

T

M bins

This is just the product of three things:
– The probability of having n bins with a spike  =

– The probability of having M-n bins with no spike  =

– The number of different ways to distribution n spikes in M bins  =

(µΔt)n

(1− µΔt)M−n

M !
(M − n)!n!

PT [n]

47



What is the probability that n spikes land in the interval T ?  

PT [n]= limΔt→0

M !
(M − n)!n!

(µΔt)n (1− µΔt)M−n

Δt→ 0 M = T
Δt

→∞Note that as             :  M − n  M

lim
Δt→0

(1− µΔt)M−n = lim
Δt→0

(1− µΔt)
T
Δt = lim

ε→0
(1+ ε )

1
ε⎡

⎣
⎢

⎤

⎦
⎥

−µT

= lim
ε→0

(1+ ε )
−µT
ε

ε = −µΔt 1
Δt

= −µ
ε

= e −µT
48

Extra Slides on Poisson process



What is the probability that n spikes land in the interval T ? 

PT [n]= limΔt→0

M !
(M − n)!n!

(µΔt)n e−µT

PT [n]=
1
n!

T
Δt

⎛
⎝⎜

⎞
⎠⎟
n

(µΔt)n e−µT

PT [n] =
(µT )n

n!
e−µT

Poisson distribution!

49

= T
Δt

⎛
⎝⎜

⎞
⎠⎟
n

M →∞Note that as             :

M !
(M − n)!

= M (M −1)(M − 2) ⋅⋅⋅(M − n +1) ≈ M n

n terms

Extra Slides on Poisson process
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