Introduction to Neural Computation

Prof. Michale Fee MIT BCS 9.40 — 2018

Lecture 13 - Spectral analysis III

Spectral Analysis

Time (s)

 Develop a powerful set of methods for understanding the temporal structure of signals Game plan for Lectures 11, 12, and 13 —

- • Fourier series, Complex Fourier series, Fourier transform, Discrete Fourier transform (DFT), Power Spectrum
- Convolution Theorem
- Noise and Filtering
- Shannon-Nyquist Sampling Theorem
	- <https://markusmeister.com/2018/03/20/death-of-the-sampling-theorem/>
- Spectral Estimation
- Spectrograms
- Windowing, Tapers, and Time-Bandwidth Product
- Advanced Filtering Methods

Nyquist-shannon theorem

 • How do we ensure that the sampling rate is greater than twice the bandwidth of the signal? *Fsamp* > 2*B*

- You don't want to sample at unnecessarily high frequencies because:
	- High-speed analog to digital converters are expensive
	- Large data files are computationally expensive to process and store

Nyquist-shannon theorem

- • How do we ensure that the sampling rate is greater than twice the bandwidth of the si**g**nal?2*B*
- 1. Use your understanding of the problem you are studying to estimate the highest frequencies you need to keep.
	- – For example, the highest important frequency for recording spike waveforms is 5- 10kHz
- 2. Use a low-pass (anti-aliasing) filter to cut out frequencies higher than the highest frequencies of interest.
	- For example, use a low pass filter that cuts off above 10-15 kHz
- 3. Sample at 2-4 times the low-pass filter cutoff.
	- For example, sample at 20-40 kHz

- • A common problem is to find a small signal in noise
	- This can be a challenge

Line noise removal

 • Another common problem is to remove a small periodic noise in your signal.

Frequency Bin

- • While the periodogram is a terrible spectral estimator for non- periodic broadband signals, it is a great estimator for perfectly stationary single-frequencies… like contamination from 60Hz.
- So, if you have a single offending frequency component…

Off with its head!

Line noise removal

• Just find those lines in Y(f) and set them to zero!

• Then inverse FFT Y(f) to get the cleaned up signal…

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design the best tapers (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Fourier transform pair

Square pulse $y(t) =$ \lceil $\begin{array}{c} \hline \end{array}$ $\left\{ \right.$ $\overline{\mathsf{L}}$ 1 *if* $|t| < \Delta T / 2$ 0 *otherwise* Sinc function $Y(f) = \Delta T \frac{\sin(\pi \Delta T f)}{\Delta T}$ ^πΔ*T f* ΔT , $\Delta F \approx FWHM$ $\Delta F \approx \frac{1.2}{4\pi}$ Δ*T*

Square_window.m

Discrete Fourier transform Square-windowed cosine

 $g(t) = square$ $x(t) = cos(2\pi f_0 t)$

⁰*t*) cos_Gauss_pulse.m

$$
y(t) = g(t)x(t)
$$

$$
y(t) = g(t)x(t)
$$

$$
Y(f) = G(f) * X(f)
$$

Product in the time-domain **Convolution** in the frequencydomain!

Using the Convolution Theorem

Gaussian-windowed cosine

Cos_Gauss_pulse.m

Discrete Fourier transform

Square vs. Gaussian windowing example on the cos_Gauss_pulse.m

- This 'kernel' is called the Dirichlet Kernel
- • The finite time-window introduces two errors into the spectral estimate.

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Spectrum of speech signals

What will the spectrum look like?

- Say we want to find the spectrum $S(f)$ of a signal y(t).
- Often we only have short measurements of y(t) (e.g. trials)

We can just average!

$$
\hat{S}(f) = \frac{1}{N} \sum_{i=1}^{N} \hat{S}_i(f)
$$

- • We could just take the FFT of each piece.
	- – But we know that a 'square windowing' means that the spectrum becomes convolved with the spectrum of the square window!

 • We will multiply each window by a smooth function called a 'taper'.

 $\hat{S}(f) =$

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Time-varying spectrum (or Spectrogram)

• Compute the spectrum in short time windows of length T $-$ slide the window in small steps of size Δt .

S $\hat{\varsigma}$

$$
\text{M}\text{M}\text{M}
$$

Output	$\hat{S}_1(f)$
—www.html	$\hat{S}_2(f)$
—www.html	$\hat{S}_3(f)$
—www.html	$\hat{S}_3(f)$
—www.html	$\hat{S}_4(f)$

$$
\hat{S}_{2}(f)
$$
\n
$$
\hat{S}_{1}(f)
$$
\nwhere $t_{i} = i \Delta t$

Spectrogram of speech signals

WSpecgram.m

What you see depends on the taper!

- How do I choose the length of the window?
- What kind of taper do I use?

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Tapers

• Is there a perfect taper?

 between –T/2 to T/2 has a spectrum that extends to infinity in No, because a function that is strictly limited to a time window frequency.

 Another problem with tapering is that, when we make a 'smooth' function that goes to zero at the edges, we lose data!

Tapers

First we consider the spectral concentration problem

 We want to find a strictly time-localized function [-T/2,T/2] whose Fourier Transform is maximally localized within a finite window in the frequency domain [-W,W].

 • We want to find a function of time w(t) that maximizes the spectral concentration.

$$
\lambda = \frac{\int_{-W}^{W} |U(f)|^2 df}{\int_{-\infty}^{\infty} |U(f)|^2 df}
$$

• Maximizing λ gives a set of k=2WT-1 functions called Slepian functions for which $\pmb{\lambda}$ is very close to 1.

 … also called discrete prolate spheroid sequence (dpss)

 W U(f) is the F.T. of w(t) $\int |U(f)|^2 df$ $U(f) = \int w(t)e^{-i2\pi ft} dt$ $\int |U(f)|^2 df$ 2*W* Ω -20 Power -40 -60 -80 -80 -60 -40 -20 20 40 60 Ω 80 Frequency (Hz)

DPSS Tapers

• The set of dpss functions is also orthogonal.

 • Because they are orthogonal, each will give an independent estimate of the spectrum!

Multi-taper spectral estimation

- Select a time window width T (temporal resolution).
- Select a time-bandwidth product p=WT (i.e. set the frequency resolution).
- Compute the set of set of dpss tapers using T and p=WT
- Estimate the spectrum using each of the k= 2*p-1 tapers

$$
\hat{S}_n(f) = \left| \sum_{t=1}^N w_n(t) y(t) e^{-i2\pi ft} \right|^2
$$

• Average the estimates to get the spectrum!

$$
S(f) = \frac{1}{k} \sum_{n=1}^{k} \hat{S}_n(f)
$$

 • You get multiple spectral estimates from the same piece of data. Which means you can get error bars ! $_{\rm 30}$

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Time-bandwidth product

- • With a larger p, you get more suppression of the side-lobes, and you increase the bandwidth.
- • But you also get more tapers, you get more spectral estimates from the same piece of data, and more averaging.

Time-bandwidth product

Time-bandwidth product

- • There is a fundamental limit to the resolution in time and frequency. $WT > 1$
- • If you want a temporal resolution of T, the bandwidth has to be greater than $W > 1/T$ $W = 1/T$ for a square taper

 $W > 1/T$ for 'narrower' tapers

 • If you want a bandwidth of W, the time window has to be greater than $T > \frac{1}{W}$

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design a taper (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

Filtering

 • Sometimes offending noise is not a single line. But if it is well enough separated from your signal, then you can use filtering.

 • We talked about using convolution for high-pass or low-pass filtering, but there are very powerful tools built into MATLAB $^\circledR$ for this.

High-pass filtering

filter_demo.m

Fnyq=Fs/2.; % Nyquist frequency (samples/sec) cutoff = 500; % Set cutoff frequency (Hz) [b,a]= butter(4, Wn, 'high'); % Butterworth high-pass Data = filtfilt(b,a,DataIn); %Run the filter! 37 $Wn = (cutoff/Fnyq);$

Low-pass filtering

 • Sometimes offending noise is not a single line. But if it is well enough separated from your signal, then you can use filtering.

Band-stop filtering

 $cutoff = [3000 6000];$ % Set cutoff frequency [b,a]= butter(4, Wn, 'stop'); % Butterworth band-stop Data = filtfilt(b,a,DataIn); % Run the filter! example the set of th $Wn = (cutoff/Fnyq);$

MATLAB® Filter Visualization Tool

Courtesy of The MathWorks, Inc. Used with permission. MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

MATLAB® Filter Designer

Courtesy of The MathWorks, Inc. Used with permission. MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Learning Objectives for Lecture 13

- • Brief review of Fourier transform pairs and convolution theorem
- Spectral estimation
	- Windows and Tapers
- Spectrograms
- • Multi-taper spectral analysis
	- How to design the best tapers (DPSS)
	- Controlling the time-bandwith product
- Advanced filtering methods

MIT OpenCourseWare <https://ocw.mit.edu/>

 9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: [https://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)