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Game plan for Lectures 11, 12, and 13 — 
Develop a powerful set of methods for 

understanding the temporal structure of signals 

• Fourier series, Complex Fourier series, Fourier transform, 
Discrete Fourier transform (DFT), Power Spectrum 

• Convolution Theorem 
• Noise and Filtering 
• Shannon-Nyquist Sampling Theorem 

– https://markusmeister.com/2018/03/20/death-of-the-sampling-theorem/ 

• Spectral Estimation 
• Spectrograms 
• Windowing, Tapers, and Time-Bandwidth Product 
• Advanced Filtering Methods 
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Nyquist-shannon theorem 

• How do we ensure that the sampling rate is greater than 
twice the bandwidth of the signal?> 2B Fsamp 

• You don’t want to sample at unnecessarily high 
frequencies because: 
– High-speed analog to digital converters are expensive 
– Large data files are computationally expensive to process and store 

4 



        
    

         

          
   
         

    
   

          
     

Nyquist-shannon theorem 

• How do we ensure that the sampling rate is greater than 
twice the bandwidth of the signal?Fsamp > 2B 

1. Use your understanding of the problem you are studying to 
estimate the highest frequencies you need to keep. 
– For example, the highest important frequency for recording spike waveforms is 5-

10kHz 

2. Use a low-pass (anti-aliasing) filter to cut out frequencies higher 
than the highest frequencies of interest. 
– For example, use a low pass filter that cuts off above 10-15 kHz 

3. Sample at 2-4 times the low-pass filter cutoff. 
– For example, sample at 20-40 kHz 
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Spectral estimation 
• A common problem is to find a small signal in noise 

– This can be a challenge 

y(t) = 0.1*sin(2π f0t) 

Powerspec_osc_in_noise.m 
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Line noise removal 
• Another common problem is to remove a small periodic noise in 

your signal. 

Periodogram 

Y ( f ) 2 S( f ) = 

• While the periodogram is a terrible spectral estimator for non-
periodic broadband signals, it is a great estimator for perfectly 
stationary single-frequencies… like contamination from 60Hz. 

• So, if you have a single offending frequency component… 

Off with its head! 
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Line noise removal 
• Just find those lines in Y(f) and set them to zero! 

• Then inverse FFT Y(f) to get the cleaned up signal… 

60 Hz noise gone! 
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Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design the best tapers (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
9 



       

 
 

  
     

  

  

Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
10 



 

Fourier transform pair 

Square pulse 

y(t) = 
⎧⎪
⎨ 
⎪⎩ 

1 if t < ΔT / 2 

0 otherwise 

Sinc function 

Y ( f ) = ΔT 
sin(πΔT f ) 
πΔT f 

ΔT , ΔF ≈ FWHM 

1.2 
ΔF ≈ 

ΔT 
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ΔT = 100ms 

ΔF = 12Hz 

ΔT = 500ms 

ΔF = 2.4Hz 

ΔT = 25ms 

ΔF = 48Hz 

Square_window.m 



 

   

 

   

Discrete Fourier transform 
Square-windowed cosine 

g(t) = square x(t) = cos(2π f0t) cos_Gauss_pulse.m 

FWHM=200 ms 

Freq = 20 Hz 

g(t) 

x(t) 

y(t) 

G( f ) 

X( f ) 

Y ( f ) 

y(t) = g(t) x(t) Y ( f ) = G( f )∗ X( f ) 
Product in the time-domain Convolution in the frequency-

domain! 
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Using the Convolution Theorem 
Gaussian-windowed cosine 

Cos_Gauss_pulse.m 

width=200 ms 

Freq = 20 Hz 

g(t) 

x(t) 

y(t) 

G( f ) 

X( f ) 

Y ( f ) 

y(t) = g(t) x(t) Y ( f ) = G( f )∗ X( f ) 
Product in the time-domain Convolution in the frequency-

domain! 
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Discrete Fourier transform 
• Square vs. Gaussian windowing cos_Gauss_pulse.m 

10 log10 S( f ) 

S( f ) = Y ( f )2 

10 log10 S( f ) 

S( f ) = Y ( f )2 
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Spectral estimation 
• This ‘kernel’ is called the Dirichlet Kernel 

• The finite time-window introduces two errors into 

Narrowband bias 

Broadband bias 
Large sidelobes 

the spectral estimate. 
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Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
16 



    

     

Spectrum of speech signals 
glottal pulses 

What will the spectrum look like? 

formants 

What causes these broad bumps? harmonic stack 
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Spectral estimation 
• Say we want to find the spectrum S( f ) of a signal y(t). 

• Often we only have short measurements of y(t) (e.g. trials) 

Trial 1 Trial 2 Trial 3 Trial 4 

… 

Ŝ1( f ) Ŝ2 ( f ) Ŝ3 ( f ) Ŝ4 ( f ) 

We can just average! 

Ŝ( f ) = 
1 ∑ 

N

Ŝ 
i ( f ) N i=1 

18 



        
         

Spectral estimation 
Ŝ( f ) = 

1 ∑ 
N

Ŝ 
i ( f ) N i=1 

Ŝ1( f ) Ŝ2 ( f ) Ŝ3( f ) Ŝ4 ( f ) Ŝ5 ( f ) 

windowing 

• We could just take the FFT of each piece. 
– But we know that a ‘square windowing’ means that the spectrum 

becomes convolved with the spectrum of the square window! 19 



           

Spectral estimation 
• We will multiply each window by a smooth function called a 

‘taper’. 

Ŝ( f ) = 
1 ∑ 

N

Ŝ 
i ( f ) Ŝ1( f ) Ŝ2 ( f ) Ŝ3( f ) Ŝ4 ( f ) Ŝ5 ( f ) N i=1 20 



       

 
 

  
     

  

  

Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
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Time-varying spectrum (or 
Spectrogram) 

• Compute the spectrum in short time windows of length T 
— slide the window in small steps of size Δt. 

Δt 

Ŝ1( f ) 
Ŝ(ti , f ) = Ŝ 

i ( f ) Ŝ2 ( f ) 
where ti = i Δt 

Ŝ3( f ) 

Ŝ4 ( f ) 

Ŝ5 ( f ) 22 



Spectrogram of speech signals 

WSpecgram.m 

23 



What you see depends on the taper! 
• How do I choose the length of the window? 
• What kind of taper do I use? 
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Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
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Tapers 
• Is there a perfect taper? 

No, because a function that is strictly limited to a time window 
between –T/2 to T/2 has a spectrum that extends to infinity in 
frequency. 

Another problem with tapering is that, when we make a 
‘smooth’ function that goes to zero at the edges, we lose data! 

26 



         
        

      

Tapers 
• First we consider the spectral concentration problem 

We want to find a strictly time-localized function [-T/2,T/2] 
whose Fourier Transform is maximally localized within a 
finite window in the frequency domain [-W,W]. 

T 
2W 

dpss_taper.m.m 

w(t) 

27 



     

            

     
  

   
    

   
  

Tapers 
• We want to find a function of time w(t) that maximizes the 

spectral concentration. 

W U(f) is the F.T. of w(t) 
U( f ) 2 df 

∞ ∫ 
λ = −∞ 

W U( f ) = ∫ w(t)e−i2π ft dt 
U( f ) 2 df −∞ ∫ 

−∞ 

• Maximizing λ gives a set of 
k=2WT-1 functions called 
Slepian functions for which λ 
is very close to 1. 

… also called discrete 
prolate spheroid sequence 

(dpss) 

2W 
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DPSS Tapers 
• The set of dpss functions is also orthogonal. 

50dB 

plot_all_dpss.m 

n=1 

n=2 

n=3 

n=4 

n=5 

T 
2W 

wn (t) 

p=3,	 k=5 

Frequency (Hz) 
• Because they are orthogonal, each will give an independent 

estimate of the spectrum! 29 



         

     

        

      

        

           
       

Multi-taper spectral estimation 
• Select a time window width T (temporal resolution). 

• Select a time-bandwidth product p=WT (i.e. set the frequency resolution). 

• Compute the set of set of dpss tapers using T and p=WT 

• Estimate the spectrum using each of the k= 2*p-1 tapers 

2 N 

(t)y(t)e− i2π f t Ŝ 
n ( f ) = ∑wn 

t=1 

• Average the estimates to get the spectrum! 

S( f ) = 
1 ∑ 

k

Ŝ 
n ( f ) k n=1 

• You get multiple spectral estimates from the same piece of data. 
Which means you can get error bars ! 30 



       

 
 

  
     

  

  

Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
31 



            
   

            
       

Time-bandwidth product 
• With a larger p, you get more suppression of the side-lobes, and 

you increase the bandwidth. 

• But you also get more tapers, you get more spectral estimates from 
the same piece of data, and more averaging. 

k = 2WT −1 

= 2 p −1 

p=1.5 T = 100ms 
1 p=5 
= 10Hz 

T 

p = 1.5 

k = 2 

p = 5 

k = 9 

Dpss_comp_WT.m 
32 



Time-bandwidth product 

T = 50 ms 

2W = 60 Hz 

p = 1.5 k = 2 

T = 8 ms 

2W = 375 Hz 

p = 1.5 k = 2 

demo_specgram.m 33 



           

             
     

              

  

 
  

Time-bandwidth product 
• There is a fundamental limit to the resolution in time and frequency. 

WT > 1 

• If you want a temporal resolution of T, the bandwidth has to be 
greater than W > 1/ T W = 1/ T for a square taper 

W > 1/ T for ‘narrower’ tapers 

• If you want a bandwidth of W, the time window has to be greater 
than T > 1W p=4 

p=2 p=WT=1 

2W k=1 k=3 

T T 

k=7 

T short time longer time 
large bandwidth smaller bandwidth p=1.5,	 2,	 2.5,	 3,	 4 34 



       

 
 

  
     

  

  

Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design a taper (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
35 



           
    

          
         

Filtering 
• Sometimes offending noise is not a single line. But if it is well 

enough separated from your signal, then you can use filtering. 

• We talked about using convolution for high-pass or low-pass filtering, 
but there are very powerful tools built into MATLAB® for this. 

36 



									 	
	 	 					 	 	 	

	 			 	 	 	
	 				 	

High-pass filtering 
filter_demo.m 

Fnyq=Fs/2.; % Nyquist frequency	 (samples/sec) 
cutoff = 500;	 % Set cutoff frequency	 (Hz) 
Wn =	 (cutoff/Fnyq); 
[b,a]= butter(4,	 Wn,	 'high'); % Butterworth high-pass 
Data =	 filtfilt(b,a,DataIn); %Run the	 filter! 37 



									 	
	 	 						 	 	 	

	 			 	 	
	 	 				 	 	 	

           
    

Low-pass filtering 
• Sometimes offending noise is not a single line. But if it is well 

enough separated from your signal, then you can use filtering. 

filter_demo.m 

Fnyq=Fs/2.; % Nyquist frequency 
cutoff = 2000; % Set cutoff frequency 
Wn =	 (cutoff/Fnyq); 
[b,a]= butter(4,	 Wn,	 'low'); % Butterworth low-pass	 
Data = filtfilt(b,a,DataIn); % Run the filter! 38 



									 	
	 	 	 						 	 	 	

	 			 	 	 	
	 				 	 	

Band-pass filtering 
filter_demo.m 

Fnyq=Fs/2.; % Nyquist frequency 
cutoff = [4000 5000]; % Set cutoff frequency 
Wn =	 (cutoff/Fnyq); 
[b,a]= butter(4,	 Wn); % Butterworth band-pass 
Data =	 filtfilt(b,a,DataIn); % Run the	 filter! 39 



									 	
	 	 	

	 			 	 	 	
	 				 	 	

Band-stop filtering 

filter_demo.m 
Fnyq=Fs/2.; % Nyquist frequency 
cutoff = [3000 6000]; 						% 	Set	cutoff 	frequency 
Wn =	 (cutoff/Fnyq); 
[b,a]= butter(4,	 Wn,	 'stop'); % Butterworth band-stop 
Data =	 filtfilt(b,a,DataIn); % Run the	 filter! 40 



 

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	

MATLAB® Filter Visualization Tool 

fvtool.m 

Courtesy of The MathWorks,	 Inc. Used with permission. MATLAB® and Simulink® are registered trademarks of The MathWorks,	 Inc. See 
www.mathworks.com/trademarks for a list of	 additional trademarks. Other product or brand names may be trademarks or registered 
trademarks	 of their	 respective holders. 
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MATLAB® Filter Designer 

filterDesigner.m 
Courtesy of The MathWorks,	 Inc. Used with permission. MATLAB® and Simulink® are registered trademarks of The MathWorks,	 Inc. See 
www.mathworks.com/trademarks for a list of	 additional trademarks. Other product or brand names may be trademarks or registered 
trademarks	 of their	 respective holders. 
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Learning Objectives for Lecture 13 

• Brief review of Fourier transform pairs and convolution 
theorem 

• Spectral estimation 
– Windows and Tapers 

• Spectrograms 

• Multi-taper spectral analysis 
– How to design the best tapers (DPSS) 
– Controlling the time-bandwith product 

• Advanced filtering methods 
43 



 
 

 

 
 

     
 

 
 
 

  
 

MIT OpenCourseWare 
https://ocw.mit.edu/ 

9.40 Introduction to Neural Computation 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms

