Introduction to Neural Computation

Prof. Michale Fee MIT BCS 9.40 — 2018

Lecture 14 Rate models and Perceptrons

Game plan for Lectures 14 – 18 *Examine the computational properties of networks of neurons*

- Rate models
- Feed-forward neural networks (Perceptrons)
- Matrix operations
- Basis sets
- Principal components analysis
- Recurrent Neural Networks
- Line attractors in short term memory
- Hopfield networks

Learning Objectives for Lecture 14

- • Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

Neural Network Models

- • We are going to examine some of the computational properties of networks of neurons.
- • Our first step is to derive a simplified mathematical model of neurons that we can study analytically.

Why would we want to do this?

- of neurons (HH model) with an integrate & fire (IF) model. • For example, we approximated the detailed spiking properties
- • This is not enough of a simplification to develop an analytical model of neural circuits.

- • Let's start with two neurons, an input neuron that synapses with weight w onto an output neuron.
- • We are going to ignore spike times, and describe the inputs and outputs of our neurons simply as firing rates.
- In the simplest case... linear neurons! $v = w u$

How can we justify this?

input neuron

- $u =$ firing rate of input neuron
	- *w* = synaptic strength (weight)

 $v =$ firing rate of output neuron

 • Let's examine the response of the output neuron to a single input spike.

• How do we get the response to multiple input spikes?

• We convolve the input spike train with the synaptic kernel !

$$
I_{syn}(t) = w K * \rho(t)
$$

But what is this?

If K is a kernel with area normalized to one, then...

$$
K * \rho(t) = u(t)
$$

is just the firing rate of the input neuron!

• Thus, we can write presynaptic firing rate as

pulse_of_firing_spikes.m

- Now, how about the firing rate of the output neuron?
- • You remember that when you injected a constant current into our Integrate and Fire model…

 The steady-state firing rate of the neuron had a threshold current below which the neuron would not spike, and some increasing f.r. above threshold.

$$
v = F[I_s] = F[wu]
$$

Linear rate models

 • We will now consider an even greater simplification of our neurons… assume they are linear.

$$
F[x] = x
$$

 We will come back to non-linear neurons shortly… they will be very important.

- rates, but we can gain a lot of insight using this • Of course real neurons can't have negative firing approximation.
- W **•** Thus, we can write the output firing rate of our linear neuron as:

$$
v = w u
$$

Multiple inputs

• What happens when our output neuron has many inputs?

 • The total input to our neuron is a sum of all the different inputs weighted by their synaptic strength!

$$
\begin{array}{c}\n u_1 \\
u_2 \\
u_3 \\
u_4 \\
u_5 \\
u_1\n \end{array}
$$

$$
I_{syn} = w_1 u_1 + w_2 u_2 + w_3 u_3 + \dots
$$

• The steady-state response of our linear neuron is now:

$$
v = \sum_b w_b u_b
$$

Learning Objectives for Lecture 14

- • Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

How to build a receptive field

 • We can see that the choice of weights allows us to specify the receptive field of our output neuron

How to build a receptive field

 • We can even build 2D receptive fields with the same formalism.

Linear algebra detour

 • Mathematically, we have described the response of our linear neuron as
..

$$
v = \sum_{b} w_{b} u_{b}
$$
\nWe are going to start using vector and matrix notation to describe the properties

\n

• …because it is much more compact and powerful

of networks

 • We have to take a short detour to learn some linear algebra.

Learning Objectives for Lecture 14

- • Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

Linear algebra detour

- A vector is a collection of numbers.
- • The number of numbers in the collection is called the dimensionality of the vector. \hat{x}
- If there are two or three numbers, we can • If there are two or three numbers, we can a draw a vector as a position, or direction, in space.

Vector sum

• Sum of two vectors

resultant
\n
$$
\vec{x} + \vec{y} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}
$$

Element-by-element addition

- • There are several ways of taking the product of two vectors
	- Element-by-element product
	- Inner product
	- Outer product
		- We will cover this later
	- Cross product

Important in physics, but we won't cover this.

• Element-by-element product (Hadamard product)

$$
\vec{x} \circ \vec{y} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \circ \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_2 y_2 \\ \vdots \\ x_n y_n \end{pmatrix}
$$

• In MATLAB[®], the element-by-element product is x.*y

• Inner product or dot product

$$
\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n
$$
\n
$$
= \sum_{i=1}^n x_i y_i = \text{scalar}
$$

Some properties…

 $\ddot{}$ \vec{x} ⋅ $\vec{y} = \vec{y} \cdot$ \rightarrow *x* commutative $\vec{w} \cdot (\vec{x} + \vec{y}) = \vec{w} \cdot$ *^x* ⁺ *w*⋅ $\overrightarrow{ }$ *y* distributive linearity

$$
(a\vec{x}) \cdot \vec{y} = a(\vec{x} \cdot \vec{y}) \tag{21}
$$

• Inner product in matrix notation

$$
\vec{y} = \begin{pmatrix} 1 & x & N & N & x & 1 & 1 & x & 1 \\ x_1 & x_2 & \cdots & x_n & y_1 \ y_2 & & y_2 & \vdots \\ \vdots & & & & & \vdots \\ y_n & & & & & \end{pmatrix}
$$

• In MATLAB[®]...

 \rightarrow \vec{x} ⋅

- $x = [1; 2; 3];$ % column vector $(1 x 3)$
	-
- $y = [2; 4; 6];$ % column vector (1×3)
- $z = x' * y$; % ' means transpose
	- % row*column vector (1x3)*(3x1)

• Dot product of a vector with itself

$$
\vec{x} \cdot \vec{x} = \sum_{i=1}^{n} x_i x_i = |\vec{x}|^2
$$

is the 'norm' or 'magnitude' of the vector $|\vec{x}|$

$$
|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i x_i}
$$

∑ Pythagorean theorem

Unit vector

• A unit vector has length 1.

$$
|\hat{x}| = 1 \qquad \qquad \hat{x} \cdot \hat{x} = 1
$$

• We can make a unit vector out of any vector

$$
\hat{x} = \frac{1}{|\vec{x}|} \vec{x}
$$

• We can express any vector as a product of a length times a unit vector:

ector:
\n
$$
\vec{x} = |\vec{x}| \hat{x}
$$

Projection

Find the component of vector $\vec{\mathrm{v}}$ in the direction of vector . \Rightarrow *y* $\hat{\hat{X}}$ Let \hat{x} be a unit vector.

 $\check{\mathcal{S}}$ calar projection' of \vec{y} onto \hat{x}

 $\dot{}$ Vector projection' of \vec{y} $\,$ onto \hat{x}

Geometric intuition of dot products

 \rightarrow *x*

• Dot product is related to the cosine of the angle between two vectors כי
÷ *y*

θ

$$
\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos \theta \qquad \cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| |\vec{y}|}
$$

• If x and y are unit vectors, then...

$$
\hat{x}\cdot\hat{y}=\cos\theta
$$

Orthogonality

• Two vectors are orthogonal (perpendicular) if and only if their dot product is zero.

- The projection of y onto x is zero.
- The vector projection of y along x is the zero vector.

'Correlation' intuition of dot product

• The dot product is related to the statistical correlation between the elements of the two vectors

Bounded between -1 and 1

Optimal stimulus

• The response of a neuron is the dot-product of the stimulus vector with the weight vector (receptive field). *I*(*x*) *or* u_b

$$
v = \sum_b w_b u_b
$$

$$
v = \vec{w} \cdot \vec{u} = |\vec{w}||\vec{u}|\cos\theta
$$

 \rightarrow We now have a definition of the 'optimal stimulus':

$$
\vec{u} = a\hat{w}
$$

1) (2) (3) (4) (5

v

x

Learning Objectives for Lecture 14

- Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

Classification

- A general computational problem solved by brain circuits is that of classification.
- Does that visual input represent a house cat or a tiger
	- o an edible object or a poisonous one
	- o a friendly dog or a wolf
- Feedforward circuits can be very good at classification

Object recognition in human cortex

Figure removed due to copyright restrictions. See Lecture 14 video or Figure 1 in Quiroga, R.Q., et al. "Invariant Visual Representation by Single Neurons in the Human Brain." Nature 435 (2005): 1102-1107.

Learning Objectives for Lecture 14

- Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

Perceptrons

- How do we make a neuron that fires when it sees a dog, but does not fire when there is no dog?
- Classification problem in one dimension: one input neuron whose firing rate is proportional to a feature - 'dogginess'.

• A central feature of classification is decision making.

-There exists a 'classification boundary' in stimulus space that separates dogs from non-dogs.

• How does a neural circuit make a decision? Spike threshold!

Binary threshold unit

• For a perceptron, we make a simplified model of a neuron that is very good at making decisions:

$$
F(x) = \text{step}(x) \qquad \qquad v = F(wu - \theta)
$$

Theta is the threshold, not an angle.

Neuron fires when the input $wu > \theta$

Thus, the output neuron begins to fire when the input neuron has a firing rate greater than the 'decision boundary.'

$$
u_{th} = \theta / w
$$

Setting the weight

• To classify, we need to learn the right *w* to make $u_{th} = u^*$

Setting the weight

• To classify, we need to learn the right *w* to make $u_{th} = u^*$

Decision boundary in two dimensions

• Sometimes classification has to be done on the basis of many features, not just one.

Decision boundary in two dimensions

• Let's look at the case where our neuron gets two inputs

 $v = F($ $\overrightarrow{ }$ \vec{w} \cdot \rightarrow $\vec{u} - \theta$)

• Now the decision boundary looks different...

• This is an equation for a line in the space of \vec{u} , specified by the weights \vec{w} and threshold $\bm{\theta}.$ \rightarrow on for a line in the space of \vec{u}

$$
w_1u_1 + w_2u_2 = \theta
$$

Decision boundary in two dimensions

• Let's start by looking at the case where $\theta = 0$

 $v = F($ $\overrightarrow{ }$ \vec{w} \cdot \rightarrow $\vec{u})$

- The neuron now fires when the projection of along \vec{w} is positive \vec{w} \vec{w} \cdot \rightarrow $\vec{u} > 0$ \rightarrow *uron now fires when the projection of* \vec{u}
- The decision boundary is given by

 $\overrightarrow{ }$ \vec{w} \cdot $\vec{=}$ $\vec{u} = 0$

• This is the set of all vectors u that have zero projection along w.

> All vectors on a line going through the origin and perpendicular to w !

Classification in two dimensions

• Let's look at this for a few simple cases in two dimensions

Classification in two dimensions

• Now let's look at the case where $\theta \neq 0$

 \vec{w} \cdot \rightarrow $\vec{u} - \theta$)

- Now the decision boundary is $\vec{w} \cdot$ \rightarrow $\vec{u} = \theta$
- This is the set of all vectors \vec{u} whose projection along \vec{w} is given by θ . \rightarrow \vec{u}

Classification in two dimensions

 $v = F($ $\overrightarrow{ }$ \vec{w} · \rightarrow $\vec{u} - \theta$) The decision boundary is $\vec{w} \cdot$ \rightarrow $\vec{u} = \theta$

• Let's calculate the weight vector $\vec{w} = (w_1, w_2)$ that gives us the decision boundary shown below. Assume $\theta = 1$. $\overrightarrow{ }$ $\vec{w} = (w_1, w_2)$

We have two points on the decision boundary we know, and two unknowns…

$$
\vec{u}_a = (a, 0) \qquad \vec{u}_a \cdot \vec{w} = \theta
$$

$$
\vec{u}_b = (0, b) \qquad \vec{u}_b \cdot \vec{w} = \theta
$$

Learning classification in higher dimensions

• In two dimensions, you can basically look at the data and decide where the decision boundary should be.

• But in higher dimensions this is a hard problem.

Perceptron learning

• How would we find the weight vector w that separates images of dogs from images of cats?

Low-dimensional

High-dimensional

Perceptron learning rule

Learning Objectives for Lecture 14

- Derive a mathematically tractable model of neural networks (the rate model)
- Building receptive fields with neural networks
- Vector notation and vector algebra
- Neural networks for classification
- Perceptrons

MIT OpenCourseWare <https://ocw.mit.edu/>

9.40 Introduction to Neural Computation Spring 2018

For information about citing these materials or our Terms of Use, visit: [https://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)