
10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Final Exam Review

Partial Differential Equations (PDEs)

1. Classification

(a) Many PDEs encountered by chemical engineers are second order (containing at most
second derivatives) or can be decomposed into a system of second order PDEs. The
standard form for a linear second order PDE for a function f : RN → R and independent
variables y ∈ RN is

∑N N

i=1

∑ ∂2

Aij
j=1

∂yi∂yj
f(y) +

N∑
i=1

bi(y)
∂
f(y) + g(y)f(y) = h(y)

∂yi

where A(y) ∈ RN×N , b ∈ RN , g(y) ∈ R, and h(y) ∈ R are arbitrary functions of the
independent variable y. This equation is valid for some points y within some prescribed
domain Ω ⊂ RN , which has a boundary δΩ ⊂ RN−1.

(b) Second order PDEs are classified by examining the properties of A(y) and b(y).

i. Elliptic at point y if A(y) is not singular and all of its eigenvalues have the same
sign.

ii. Hyperbolic at point y if A(y) is not singular and all of its eigenvalues but one have
the same sign.

iii. Parabolic at point y if A(y) has one eigenvalue equal to zero and all other eigenvalues
have the same sign. Additionally, the rank of the matrix[

AC
1 (y) AC

2 (y) · · · AC
N (y) b(y)

must be N . In other words, b cannot be written as a linear

]
combination of the

columns of A(y).

The PDE is called an elliptic, hyperbolic, or parabolic PDE when these conditions hold
for all y in the domain Ω.

(c) Quintessential examples of these types

i. Elliptic – Steady diffusion represented by Laplace’s equation

0 = D

(
∂2C

∂x2
1

+
∂2C

A
∂x2

2

)
y=(
−
x
→ (y) =
1,x2)

[
D 0
0 D

]
ii. Hyperbolic – Wave equation

∂2C ∂
= u2

∂t2

(
2C

∂x2
1

+
∂2C

∂x2
2

)
−→

y=(x1,x2,t)
A(y) =

u2 0 0
0 u2 0
0 0 −1


1



iii. Parabolic – Unsteady diffusion

∂C

∂t
= D
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∂2C

∂x2
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+
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∂x2

2

)
y=(
−
x
→ (y) =
1,x2,t)


D 0 0 0 D 0
0 0 0

 ; b =


0 0
−1


2. Finite differences

(a) In the finite difference method, the domain of a function f(y) described by a PDE is
decomposed into a finite set of points (or nodes). Then, the finite difference formula is
used to approximate derivatives in the PDE at these nodes.

(b) These difference formulas introduce errors with respect to spacing between the nodes.
Typically, we use approximations that are first or second order with respect to the
spacing between nodes.

(c) With one discrete algebraic equation produced per node and f(y) unknown at each
node, this procedure yields a complete system of algebraic equations that can be solved
using standard methods. Linear PDEs will result in a linear system of equations while
nonlinear PDEs will result in a nonlinear system of equations.

(d) This method can be used to solve most PDE problems (elliptic, parabolic, hyperbolic)
including steady state or unsteady problems. It is fairly easy to implement but hard
to incorporate irregular boundary shapes. This method does not conserve, conserved
quantities (loss of mass, energy, momentum from simulation for example).

3. Finite volumes

(a) The finite volume method was discussed in the context of BVPs. The idea does not
change when we move to PDEs except now we look at cells possibly distributed in space
and as a function of time.

(b) The basic idea is to integrate the differential form of the conservation equation and then
look at the “flux” (total amount of material) through each face of the cell. This allows
us to look at very complicated geometries in a simple way as we are merely breaking up
the domain into “cells” and satisfying a total conservation equation locally in each cell.

(c) Typically the flux is approximated using some polynomial interpolation between cell
centers (that represent the average concentration in the cell). See page 101 of the
extended PDE notes for detailed equations.

(d) The same rules apply for indexing the cells as discussed for nodes in the finite difference
section. Again, the equations tend to be sparse such that we can take advantage of
sparse/iterative solvers to get reasonably fast solutions.

4. Numerical method of lines

(a) The method of lines is a technique for solving PDEs with initial conditions that capital-
izes on the efforts to develop stable, high accuracy methods for first order ODEs.

(b) Typically, the spatial domain is approximated using finite differencing while time deriva-
tives are kept. This gives us a set of ODE-IVPs that can be solved using standard
methods. This allows us to overcome issues with the advection equation using central
difference in space for example (which is second order accurate) . We showed that a
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forward Euler integration of this scheme was unconditionally unstable. However, when
the time derivative is kept intact, ODE solvers that have a conditional stability as a
result of adaptive time stepping or high order accuracy can be used.

Probability Theory

1. Preliminaries: probability obeys three rules:

(a) For any event A, the probability of event A satisfies Pr(A) ≥ 0.

(b) The probability of the event consisting of all possible outcomes is one, Pr(E) = 1.

(c) If the events A and B are mutually exclusive, then Pr(A or B) = Pr(A) + Pr(B).

Any other result in probability theory, intuitive or otherwise, can be derived from these
three rules without any further assumptions. One fundamental result that follows from these
properties is: For any events A and B,

Pr(A or B) = Pr(A) + Pr(B)− Pr(A and B)

2. Definitions

(a) Random variable – Formally, a random variable is any function of the outcome of an
experiment g : E → R. In general, let x denote a random variable on a set of outcomes
E. Performing a single trial produces an outcome ξ ∈ E that is a realization or sample
of the random variable x, x(ξ) = x̂ ∈ R. Since the value of a random variable depends
on the outcome of a trial, the events can be defined in terms of random variables. For
example, the subset of E defined by {ξ : x(ξ) ≥ 5} is an event, which is interpreted as
“the outcome of the trial ξ satisfies ξ ≥ 5”. These events also have probabilities, which
are denoted by

Pr(x ≥ 5) = Pr({ξ : x(ξ) ≥ 5}).

(b) Probability mass function – for a discrete random variable X, the probability mass
of x is the probability of the event X = x which can be written pX(x) = P(X = x). A
PMF must have the property that x pX(x) = 1.

(c) Probability density function – the∫ es

∑
probability density describes the probability that

a continuous random variable tak a value in a specified range: P(a ≤ X ≤ b) =
b
fX(x)dx. The PDF fX satisfiesa ∫ +∞

fX(x)dx = 1
−∞

Because the PDF represents a “probability mass per unit length” the values of fX(x)
do not need to be strictly less than 1 but they must be nonnegative.

(d) Cumulative probability function – The cumulative probability function (also known
as the cumulative distribution function) Fx of a random variable is defined as

x

FX(x) = P(X ≤ x) =

∫
fX(t)dt

−∞
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Fx is a non-decreasing function with Fx(−∞) = 0 and Fx(+∞) = 1. The probability
that x will be in the range [x1, x2] in a single trial is

Pr([x1, x2]) = Fx(x2)− Fx(x1)

(e) Marginal probability – given the joint probability pX,Y (x, y) the marginal probability
of X is pX(x) =

∑
y pX,Y (x, y)

(f) Conditional probabilities – For two events A and B, the conditional probability of
A given B is the probability that the event A will occur, given that event B is known
to occur (or to have occurred). This is related to the intersection of the two sets by

Pr(A and B)
Pr(A|B) =

Pr(B)

We can rearrange this expression for the conditional probability

Pr(A and B) = Pr(A|B)Pr(B)

(g) Independence The events A and B are said to be independent if

Pr(A and B) = Pr(A)Pr(B)

which implies that the events A and B are independent if and only if Pr(A|B) = Pr(A).
That is, the probability of the occurrence of event A is not affected by whether the event
B has occurred. This result is consistent with our intuition as to the meaning of two
events being independent.

(h) Expected value – The expected value of x (known as the mean of x) is

〈x〉 =

∫ +∞
x′fX(x′)dx′.

−∞

Let g be a function of the random variable x. The expected value of g is defined as

∞
〈g(x 〉 =

∫ +

) g(x′)fX(x′)dx′.
−∞

(i) Variance – The variance of x, σ2
x, is defined as the expected value of (x− 〈x〉)2,

σ2
x = 〈(x− 〈x〉)2〉

=

∫ +∞
(x− 〈x〉)2px(x′)dx′

−∞

=

∫ +∞
(x2 − 2〈x〉x+ 〈x〉2)px(x′)dx′

−∞

=

∫ +∞ +∞
x2px(x′)dx′ − 2〈x〉

−∞

∫
xpx(x′)dx′︸−∞ ︷︷ ︸
〈x〉

+〈x〉2
∫ +∞

−∞
px(x′)dx′︸ ︷︷

1

=

︸
〈x2〉 − 2〈x〉2 + 〈x〉2

= 〈x2〉 − 〈x〉2
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The variance of f(x), which is a function of random variable x, is

σf = 〈f2〉 − 〈f〉2

The standard deviations of x and f are σx =
√
σ2
x and σf =

√
σ2, respectively.f

3. Important Theorems

(a) Total probability theorem – Let A1, . . . , An be disjoint events that form a partition
of the sample space (each possible outcome is included in exactly one of the events
A1, . . . , An) and assume that P(Ai) > 0∀i. Then, for any event B,

Pr(B) = Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + · · ·+ Pr(B|An)Pr(An)

This can be written in a more compact form

n

Pr(B) =
∑ n

Pr(B and Ai) = Pr(
i=1

∑
B

i=1

|Ai)Pr(Ai)

(b) Bayes’ theorem – For two events Ai and B, taking the intersection of two sets is
independent of the order of the two sets,

Pr(Ai and B) = Pr(B and Ai)

Applying the conditional probability expression to both sides gives

Pr(B )
Pr(Ai

|A )Pr(A| → i
B)Pr(B) = Pr(B|Ai)Pr(Ai) − Pr(Ai| i

B) =
Pr(B)

This is known as Bayes’ Theorem. When Ai is a member of a collection of events,
A1, . . . , An, which is mutually exclusive and collectively exhaustive, we can substitute
the Total Probability Theorem into the denominator

Pr(B )
Pr(Ai|B =

|Ai)Pr(Ai
)

Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + · · ·+ Pr(B|An)Pr(An)

Bayes’ theorem provides a useful framework for using experimental measurements to
update knowledge about a physical problem, which is often applied in design of prog-
nostic/diagnostic systems and in the estimation of states or model parameters from
experimental data.

(c) Central limit theorem – Let X1, X2 . . . be a squence of independent identically dis-
tributed random variables with common mean µ and variance σ2, and define

X1 +
Zn =

· · ·+Xn − nµ
σ
√
n

Then the CDF of Zn converges to the standard normal CDF

1
F (z) = √

z

2π

∫
e−x

2/2dx
−∞

in the sense that P(Zn ≤ z) = F (z).
n→∞
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4. Notable distributions

(a) The normal or Gaussian PDF is

1
px(x̂) =

σ
√ 2

e−(x−µ) /(2σ2)

2π

The mean and variance of a random variable x with this PDF are 〈x〉 = µ and σ2
x = σ2.

(b) The uniform PDF on interval [a, b] ⊂ R is

1

px(x̂) =

 , if x̂ b
− a

∈ [a, ]
b

0, otherwise

A random variable x with this PDF has zero probability of being observed outside of
the interval [a, b], and the probability of being observed in any infinitesimal interval
[x,ˆ x̂ + dx] is equal for all x̂ ∈ [a, b). The mean and standard deviation of the uniform

distribution are 〈x〉 = a+b and σx = 1
2 3

(
b−a 2

2

)
.

(c) The binomial PMF is

p(k) =

(
n
k

)
pk(1− p)n−k

where (
n
k

)
n!

=
k!(n− k)!

and this factor is known as the binomial coefficient. When n = 1 this is known as the
Bernoulli distribution.

5. Multivariate extensions

(a) Random vector – A random vector is a vector of random variables

x = (x1, . . . , xn),

which can be written either as a row or column. These appear naturally when the
outcome of an experiment are vector-valued (e.g., the experiment may be to measure
the velocity of the particle, which as three components v = (vx, vy, vz)).

(b) Joint cumulative probability function – The joint cumulative probability function
of a random vector x is defined as

Fx(x̂) = Pr(x1 ≤ x̂1 and x2 ≤ x̂2 and · · · and xn ≤ x̂n),

where x̂ = (x̂1, . . . , x̂n).

(c) Joint probability density function – The joint PDF of the random vector x is a
function px defined by: They probability that, in a given trial, x(ξ) is in the infinitesimal
interval

[x̂, x̂ + dx] ≡ [x̂1, x̂1 + dx1]× · · · × [x̂n, x̂n + dxn]
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is

Pr([x̂, x̂ + dx]) = fX(x̂)dx

The PDF fX satisfies∫ +∞ +∞
px(x′)dx′ =

∫
· · ·
∫

fX(x1
′ , . . . , x′n)dx′1 . . . dx

′
n = 1

Rn −∞ −∞

and is related to the joint CDF by

Fx(x̂) =

∫ x̂1 x̂n

· · · px(x′1, . . . , x
′
n)dx′1 . . . dx

′
n

−∞

∫
−∞

The probability that the random vector lies in any region Ω ⊂ Rn can be computed,

Pr(x ∈ Ω) =

∫
fX(x′)dx′

Ω

(d) Independent random variables – The (scalar) random variables x1, . . . xn are said
to be independent if

pX(x̂) = pX1(x̂1)pX2(x̂2) · · · pXn(x̂n)

i.e. the distribution can be factored.

(e) Mean – The mean of a random vector x is

〈x〉 =

∫
x′fX(x′)dx′

Rn

Note that this is a compact way to represent the mean of each component of the vector

〈xi〉 =

∫
x′ipx(x′)dx′

Rn

(f) Covariance – The covariance of the two (scalar) random variables xi and xj is

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉

= 〈xixj〉 − 〈xi〉〈xj〉

The variance of xi is C 2
ii = σxi . The covariance matrix of the random vector x isC11 · C1n . .

· ·
.C = . . .. . .


C1n · · · Cnn


Note that the covariance matrix is symmetric, positiv


e definite and invertible. The

random vector x is uncorrelated if C is diagonal. If the elements of x are independent,
then x is uncorrelated.

(g) The multivariate Gaussian distribution has the following form:

k

pX(x) = (2π)− 2 |Σ|−
1
2 exp

(
− 1

(x
2
− µ)TΣ−1(x− µ)

)
where k is the dimension of x, Σ is the covariance and µ is the average.
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(h) Sample average – Suppose that x is a scalar random variable with PDF px and f is a
function of x. The sample average of f with N samples is

SN
1

f = x
N

∑N
f( i),

i=1

where x1, . . . , xN are N samples from px (equivalently, values of the random variable x
in N trials, xi = x(ξi)).

The sample average is a function of the N samples from px. An equivalent interpretation
is that the sample average is a function of N independent random variables, all of which
have the same PDF px. That is, SNf is a function of a random vector x = (x1, . . . , xN )
with

px(x̂) = px(x̂1)px(x̂2) · · · px(x̂N )

Models and Data

1. Least-squares solution

(a) To fit a linear model, yP = Aθ where A is the data and yP is the prediction, often the
sum of the squared error (deviation between the prediction and data) is minimized.

(b) This problem is formulated as:

θLS = arg maxeTe = arg max(y−Aθ)T(y A
θ θ

− θ)

(c) The solution to this optimization problem is

θ = (ATA)−1ATy

2. Maximum likelihood estimation (MLE)

(a) The maximum likelihood estimation of the parameters of a model maximizes the prob-
ability (or likelihood) of the errors between the observed dataset and the model.

(b) The likelihood function is sometimes written L(θ;D) = p(D|θ) where D is the dataset
and θ is the vector (or scalar) parameters of the model.

(c) To do this, we define our error to be ε = ŷD − yP (θ) and assume that the distribution
of our errors is normal. This gives pdf:

1
pε(ε̂) = (2π)−(K/2)|C|−(1/2)exp

(
− (ε̂− 〈ε〉)TC−1(ε̂

2
− 〈ε〉)

)
(d) The MLE parameters can then be defined:

θMLE = arg max L(θ;D)
θ

(e) Given the model, the covariance structure can often be estimated before data is col-
lected. The covariance can then be used in the design of experiments. The covariance
is estimated using a two-step procedure:
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i. Approximate the elements of the Hessian

Hmn = 2
∑ 1

i
σ2
i

∂Yi
∂Pm

∂Yi
∂Pn

where Yi is the predicted value of the observable, σi is the estimated uncertainty in
Yi and Pm and Pn are model parameters.

ii. The Hessian matrix is diagonalized to find the eigenvectors and eigenvalues

iii. The elements of the covariance matrix are estimated

Cjk =
∑ 1

i

vjivki
λi

where λ is the ith eigenvalue and v is the ith th
i ji element of the j eigenvector.

iv. NOTE: if the model is nonlinear, prior estimates of the parameters will be required
to calculate the partial derivatives.

(f) To perform this analysis, the covariance matrix, C is needed. The covariance can be
estimated from the data but often there is not enough information to estimate all of the
parameters. Often the covariance matrix is assumed to have a diagonal structure (i.e.
the observables are assumed to be independent).

3. Bayesian parameter estimation

(a) Another estimate of the model parameters arises from a Bayesian framework which
considers and estimate based on the posterior distribution of the parameters.

(b) Recall that Bayes’ Theorem tells us that:

p(D
p(θ

|θ)p(θ)|D) =
p(D)

where again D is the dataset and θ are the parameters. p(θ) is referred to as the prior
distribution.

(c) Solving for the full distribution of the parameters given the data can be a very diffi-
cult problem however often we are interested only in the maximum a posteriori (MAP)
estimate, which is the best estimate of the parameters given the data (and our prior
information about the parameters). To find this MAP estimate, we first note that the
denominator is not a function of the parameters therefore

p(θ|D) ∝ p(D|θ)p(θ)

The MAP estimate is therefore

θMAP = arg max p(D|θ)p(θ)
θ

How do we estimate p(D|θ)? If we assume we have normally distributed errors, by the
central limit theorem, we can write

1

p (< y > |x, θ) = (2n)− 2 σ−1 exp

(
−χ

2

2

)
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where

χ2 =

(
< y > −f(x, θ)

σ

)2

and σ2 = 1 (< y2 > − < y >2) is the sample standard deviationN

(d) NOTE: mathematically there are clear ties between ML and Bayesian estimation of the
parameters. The underlying difference has to do with the formulation of the problem:
in MLE the parameters of the distribution are assumed to be fixed but unknown, in
Bayesian the parameters are treated as random variables.

Monte Carlo Methods

1. One of the applications of the Monte Carlo Methods is to approximate integrals for high
dimensions.

If =

∫
f(x)dx (1)

Ω

e.g. In the case of 1-D,
b

If =

∫
f(x)dx (2)

a

2. Crude Monte Carlo Integration (Random Sampling)

(a) Generates a vector of random variable x ∈ Ω from a uniform PDF,

p unif 1
x (x) = (3)

m(Ω)

where m(Ω) is a normalization constant such that
∫
p unif
x (x)dx = 1.Ω

e.g. In the case of 1-D,

p unif 1
x (x) = (4)

(b− a)

(b) With the uniform PDF, we can then relate the integral If to the expected value of f by

If = m(Ω)

∫
f(x)p unif

x (x)dx = m(Ω)
Ω

〈f〉 . (5)

where 〈f〉 denotes average of f over the volume (or its analogue in d-dimension) Ω where
p unif
x (x) is a uniform PDF

(c) We determine 〈f〉 by first evaluating f at a larger number (say N) of x’s randomly
distributed over the volume Ω and then taking the average of these values.

1
If ≈ I N

f ≡ m(Ω)
∑N

f(xi) (6)
N

i=1

(d) Algorithm:

i. Initialize I N
f = 0.

ii. For i = 1, . . . , N ,
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A. Compute a sample xi of the random vector x with unifom PDF

B. Compute the function value fi = f(xi)

C. Assign I N
f := I N

f + fi

iii. Return I N
f := m(Ω)I N

f /N

(e) Note that in MATLAB, you use the function rand() to sample numbers uniformly
between 0 and 1.

3. The Metropolis Monte Carlo Algorithm

(a) The Metropolis algorithm uses a Markov process in order to construct a sequence of
configurations, R1, R2, . . . that are samples of the equilibrium (or the target) PDF pr.
Starting from some configuration R0, the collection of sampled Ri’s eventually yield a
distribution that evolves to the target PDF after sampling many times. This idea is the
basis for the Markov Chain Monte Carlo (MCMC) method. The Metropolis algorithm
is one of the sample techniques used in MCMC.

(b) There are two conditions that need to hold for a Markov process:

i. ergodicity: With enough steps you reach any configurations from any other config-
urations

ii. detailed balance: At equilibrium, the transition from one state (e.g. R′) to another
ˆ(e.g. R) is as probable as the reverse case.

ˆ ˆpr(R)T (R,R′ ˆ) = pr(R
′)T (R′,R) (7)

(c) If Neq is the number of steps taken for the Markov process to reach equilibirium, then
the sequence RNeq+1 , RNeq+2 , . . ., is a sequence of samples from the PDF pr

ˆ(d) The transition PDF (R′ ˆT ,R) (PDF of selection configuration R as a potential move,
ˆgiven that the system is presently in configuration R) have two contributions: the

selction PDF and the acceptance PDF

ˆ ˆ ˆT (R′,R) = T s(R′,R)T a(R′,R) (8)

(e) We choose T s ˆ ˆto be symmetric such that T s(R′,R) = T s(R,R′). We can then choose
T a that satisfies the detailed balance (7). In the Metropolis algorithm, the choice of T a

is

a

{
ˆ1 if pr(R) > pr(R

′)
T = (9)

ˆpr(R)/pr(R
′) otherwise

Stochastic Chemical Kinetics

1. Chemical master equation
The master equations does NOT describe the change in X(t) (which is the state of the
system as a function of time), as the continuum equations would, because this vector varies
stochastically. Instead, the master equation describes the grand probability function for a
series of states n at a time t given an initial state n0 at time t0.

P (n, t | n0, t0) = Pr(X(t) = n | X(t0) = n0)

11
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This probability density function is evolving in time which can be described by the ODE:

dP (n, t | n0, t0) ∑M
=

[
P (n− νµ, t | n0, t0)hµ(n− νµ)cµ − P (n, t n0, t0)hµ(n)cµ

dt
µ=1

|
]

The first part of the equation describes the transition from a different state through a reac-
tion νµ to the current state. The second part is the remnant of an equation describing the
probability of staying in the same state. Thus, this encompasses all the different ways that
we can get to state n at time t.
The CME can also be stated as

dPσ
=
∑

Wσ′→σPσ′(t)
dt

−
σ′

∑
Wσ→σ′Pσ(t)

σ′

where Pσ denotes the probability that the system is in configuration σ at time t and Wσ′→σ
denotes the rate of transition from configuration σ′ to configuration σ. The CME describes
the entire PDF of the state X(t) for every time t.

The state variables of the CME are the probabilities of every possible state of the reacting
system. As a trivial example, in a system with only one species A that can create or destroy
itself, the CME has one ODE for the probabilities of each of the states (i.e., there is 1 molecule
of A, there are 2 molecules of A, . . ., there are j molecules of A, . . . ). When there are multiple
reacting species, every possible combinations of molecule numbers must be accounted for, and
the number of ODEs in the CME can easily reach 1040 or more. Due to the high computational
costs, most researchers need to employ a Monte Carlo approach.

2. Formalism of the stochastic problem

Consider a volume V containing N chemically reacting species, S1, . . . , SN , and denote the
number of molecules at each time t by the vector

X(t) = (X1(t), . . . , XN (t)).

These species can undergo M chemical reactions R1, . . . , RM . Each Rµ reaction has an
associated stoichiometry vector νµ. For example, if N = 3, then the reaction S1 + S2 → S3

has the stoichiometry vector ν = (−1,−1, 1).

If the Rµ reaction occurs at t̂, then the state vector changes according to

X(t̂+ dt) = X(t̂− dt) + νµ

where X(t̂ − dt) and X(t̂ + dt) represent the number of molecules immediately before and
after the reaction occurs, respectively.

The chemical reactions are assumed to occur stochastically, according to some probability
distributions.

(a) Counting number of possible Rµ reactions – In order for Rµ to occur, it is necessary
that one molecule of each reactant species collide with each other at some time. At
any given time, it is possible that many different combinations can cause the reaction.
Exactly how many distinct combinations depends on how many molecules of each species
is present i.e., on X(t).

12



Denote the number of unique groups of reactants that could collide to cause Rµ by
hµ(X(t)). We need to be careful that we properly count the discrete number of molecules
(e.g., avoid double counting).

Examples:

S1 + S2 → S3, hµ(X(t)) = X1(t)X2(t)

S1 + S 1
1 → S3, hµ(X(t)) = 2X1(t)(X1(t)− 1)

S1 + S1 + S1 → S3, hµ(X(t)) = 1X1(t)(X1(t)6 − 1)(X1(t)− 2)

S1 → S2, hµ(X(t)) = X1(t)

(b) Fundamental hypothesis – Suppose that at least one complete group of Rµ reactants
exists in volume V . Let πµ(t, dt) denote the probability that a particular one of these
groups will react in the time interval [t, t + dt]. The fundamental hypothesis of the
stochastic approach to chemical kinetics is that, for each reaction Rµ, there is a constant
cµ such that

πµ(t, dt) = cµdt

This assumes that the probability that Rµ will occur in the interval [t, t+ dt] increases
linearly with dt (for small enough duration dt). In the bimolecular case, the constant cµ
can be derived from the kinetic theory of gases based on the following assumptions:

1. the positions of the molecules in V are random and uniformly distributed,

2. the velocities of the molecules in V are distributed according to the Maxwell-Boltzmann
distribution.

A consequence of the fundamental hypothesis is that the probability of multiple reaction
events, of any kind, in [t, t + dt] can be shown to scale as O((dt)2). Therefore, in the
limit as dt → 0, the probability of multiple reaction events tends to zero more rapidly
than dt such that the probability of single reaction events dominates. For this reason,
all single reaction events in [t, t+ dt] can be treated as mutually exclusive, because only
one reaction can occur (to first order approximation).

(c) Probability that reaction Rµ occurs in [t, t+dt] – From the fundamental hypothesis,
we assume that at most one reaction can occur in [t, t+ dt]. To compute the probability
that Rµ occurs in [t, t + dt], recall that there are hµ(X(t)) distinct groups of reactants
that could possibly react in [t, t+dt], each with probability cµdt. Since these hµ possible
reactions can be assumed to be mutually exclusive, the individual probabilities can be
summed to give

Pr(exactly 1 Rµ rxn occurs in [t, t+ dt] | X(t) = n) = hµ(n)cµdt

where n is a vector of N integers with the ith element being the number of molecules of
species Si in the reacting system at time t.

Since at most one reaction is allowed to occur [t, t+ dt], the occurrences of each type of
reaction R1, . . . , RM are mutually exclusive, which implies we can sum all the probabil-
ities

M

Pr(exactly 1 rxn occurs in [t, t+ dt] | X(t) = n) =
µ

∑
hµ(n)cµdt

=1
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(d) The probability that no reactions occur in [t, t + τ ] – In the stochastic view of
chemical kinetics, there are periods of time in which nothing happens. In order to
accurately simulate this situation, some characterization is needed for when the next
reaction will occur. Formally, we can ask: Given that X(t) = n, what is the probability
P0(τ,n) that no reactions occur in the volume V within the time interval [t, t+ τ ]?

We first consider the probability P0(ε,n) where ε is very small. For small enough ε, at
most one reaction can be assumed to occur in V during [t, t+ ε] such that

P0(ε,n) = 1− Pr(exactly 1 rxn occurs in [t, t+ ε | X(t) = n)

M

= 1−
∑

hµ(n)cµε
µ=1

In order to calculate P0(τ,n), we divide the interval [t, t + τ ] into a large number of K
intervals each of length ε = τ/K : [t, t+ ε], [t+ ε, t+ 2ε], . . . , [t+ (K − 1)ε, t+Kε]. The
probability P0(τ,n) is the joint probability that reactions do not occur in every interval.
We can assume the process to be a Poisson process such that the probability that a
reaction occurs in a given interval is independent of the probability of reaction occurring
in other intervals, which implies that

P0(τ,n) = P︸ 0(ε,n)P0(ε,n) · · ·P0(ε,n)︷︷ ︸
K times

=

1−
M∑
µ=1

hµ(n)cµτ

K

K .
This argument is valid for any sufficiently large K such that

P0(τ,n) = lim
K→∞

1−
M∑
µ=1

hµ(n)cµτ
K

K

 = exp


M− h
µ

∑
µ(n)cµτ

=1



Therefore, the probability that no reaction occurs during [t, t+τ ] depends on


all reaction

parameters {cµ} and decreases exponentially with the length of the interval τ .

3. Kinetic Monte Carlo Simulation

The kinetic Monte Carlo (KMC) algorithm computes a sample from the PDF of X(t) (i.e.,
computes a single trajectory in time). If the KMC algorithm is run a large number of times,
the the frequency of observing a state, say X(t̂) = n∗, approaches the probability predicted
by the CME, P (n∗, t̂ | n0, t0).

(a) Determining the next reaction time – The KMC algorithm requires the probability
that the next reaction occurs in the infinitesimal time interval [t+ τ, t+ τ +dτ ], denoted
by Pnext(τ,n)dτ .

The PDF of the random variable τ (at a fixed n) is given by

Pnext(τ,n) = a(n) exp
(
− a(n)τ

where a(n) is defined as the total reaction propensity

)
M

a(n) =
µ

∑
hµ(n)cµ

=1
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Determining the next reaction time in KMC involves sampling this PDF, which can be
done by generating a random number r1 from the uniform distribution on the interval
(0, 1] and computing

ln(1/r1)
τ =

a(n)

(b) Determining the next reaction type – Since the possibility of multiple reactions was
excluded and the next reaction time was determined by sampling the PDF Pnext(τ,n),
there is guaranteed to be exactly one reaction that occurs in [t + τ, t + τ + dτ ]. There
are M mutually exclusive possibilities, R1, . . . , RM , each with probability

hµ(n)cµdτ, µ = 1, . . . ,M

The probability that reaction Rµ′ occurs is given by the ratio

hµ′(n)cµ′

a(n)

For a fixed n, this ratio is the PDF of the random variable µ′, which can be sampled by
selecting a number r2 from the uniform distribution on (0, 1] and choosing µ′ to be the
smallest integer such that

µ′

r2 ≤
µ

∑
hµ(n)cµ

=1

a(n)

(c) KMC Algorithm – We can state the KMC algorithm as

1. Initialize: t = t0 and X(t) = n0.

2. While t < tf :

(a) Form a list of all possible rates in the system R1, . . . , RM and compute the total
reaction propensity a(X(t)).

(b) Sample two random numbers, r1 and r2, from the uniform distribution on (0, 1].
ln(1/r1)

(c) Determine the reaction time as τ = .
a(X(t))

µ′ h (n)c
(d) Determine the reaction type as the smallest µ′

µ≤ µ=1 µ
such that r2

∑
.

a(n)
(e) Carry out the selected reaction event by setting t := t+τ and X(t) := X(t)+νµ′ .

3. Interpreting results
From the KMC algorithm, we obtain a trajectory. Depending on the system and
what we want to measure, we can use one long trajectory or may need to run several
trajectories. To obtain estimates of the probability of a certain state ni, we need to
compute P (n = ni) from the trajectory by counting the frequency of each statein n
in the total trajectory or set of trajectories weighted by the timesteps τ . To compute
estimates of the duration of certain states or the time between each state, we iterate
through the trajectories computing the time we spend in each state. For simple
problems these can also be estimated from the transition probabilities.

As always, this document may have typos. Please refer to your notes for the most complete
recap of the course. It’s been great working with all of you. Good luck with finals!
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