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Recap

• Quasi-Newton-Raphson methods
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Recap
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Recap
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Good Initial Guesses

• Solving nonlinear equations and optimization require 
good initial guesses

• Where do these come from?

• Nonlinear equations can have multiple roots, 
optimization problems can have multiple minima.

• How can we find them all?

• The concepts of continuation, homotopy and bifurcation 
are useful in this regard. 
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Continuation
• Example:

• Find the roots of: 
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Continuation

• Example:

• Find the roots of: 

• Guess the roots based on a plot of the function

• easy in 1-D, hard in many dimensions

• Transform the problem from an easy to solve one 
to the problem we want to solve: 

• Let

• Find roots as      grows from zero to one 

• When            ,

• Use solution for one value of     as guess for next
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Continuation
• Example:

• Find the roots of: 
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f(x) = x

3 � 2x+ 1

f(x) = x

3 � 2�x+ 1

lambda = [ 0:0.01:1 ];

xguess = -1;

for i = 1:length( lambda )
    
    f = @( x ) x .^ 3 - 2 * lambda( i ) * x + 1;
    
    x( i ) = fzero( @( x ) f( x ), xguess );
    
    xguess = x( i );
    
end;



Continuation
• Example:

• Find the roots of: 
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Continuation

• Example:

• Find the roots of: 

• Transform the problem from an easy to solve one 
to the problem we want to solve: 

• Let

• When     is large

• Start with large     and trace back to    
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f(x) = x

3 � 2x+ 1

�

f(x) = x

3 � 2�x+ 1

x ⇡ 1/(2�),±
p
2�

� = 1�



Continuation
• Example:

• Find the roots of: 
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f(x) = x

3 � 2x+ 1
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Continuation
• Example:

• Find the roots of: 
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f(x) = x

3 � 2x+ 1
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Continuation

• Continuation can be used to generate a sequence of good initial 
guesses to different problems by varying a parameter by a small 
amount.

• Examples:

• fluid mechanics problems by varying the Reynolds number

• mass transport problems by varying the Peclet number

• multicomponent phase equilibria problems by varying 
temperature/pressure

• reaction equilibrium problems by varying reaction rates
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Homotopy
• This transformation from one problem to another is 

termed homotopy.

• Generically, we seek the roots           of an equation:

• When           ,

• The roots            are the roots of 

• When           , 

• The roots            are the roots of

• There is a smooth transformation from          to

•    is varied in small increments from zero to one and the 
solution             is used as the initial guess for
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Homotopy

• For small changes in the homotopy parameter, the 
previous solution will be a good initial guess.

• Newton-Raphson like methods can be expected to 
converge quickly.

• In practice, the function         is associated with the 
problem of interest, but the function          is arbitrary.

• It may be difficult to find a good function      

• Physically based homotopies are usually preferable.
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Homotopy
• Example:

• Find roots of the van der Waals equation of state 
given: 
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Homotopy
• Example:

• Find roots of the van der Waals equation of state 
given: 

• Create the homotopy:

• with the ideal gas function:

•           ,  ideal gas;           , van der Waals
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Homotopy
• Example:

• Find roots of the van der Waals equation of state 
given: 
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P̂ = 0.1, T̂ = 0.5

T = 0.5;
P = 0.1;

vguess = 8 / 3 * T / P;

f = @( v ) ( P + 3 ./ v .^ 2 ) .* ( v - 1/ 3 ) - 8 / 3 * T;
g = @( v ) P .* v - 8 / 3 * T;
h = @( v, l ) l * f( v ) + ( 1 - l ) * g( v );

lambda = [ 0:0.01:1 ];

for i = 1:length( lambda )
    
    v( i ) = fzero( @( v ) h( v, lambda( i ) ), vguess );
    vguess = v( i );
    
end;



Homotopy
• Example:

• Find roots of the van der Waals equation of state 
given: 
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• Example:

• Find roots of the van der Waals equation of state 
given: 
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• Example:

• Find roots of the van der Waals equation of state 
given: 
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• Example:

• Find roots of the van der Waals equation of state 
given: 
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• Parameterize the roots and homotopy parameter in 
terms of the distance travelled along the solution curve:

•   

• Determine how to change homotopy parameter from 
arclength constraint: 

Arclength Continuation
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Bifurcation

• Example:

• Find the real roots of 
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Bifurcation

• Example:

• Find the real roots of 
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Bifurcation

• Occasionally, a problem will switch from having 1 solution 
to having many solutions as a parameter is varied.

• We have seen how this occurs discontinuously with 
turning points.

• When additional solutions appear continuously, it is 
termed bifurcation.

• Bifurcations in a homotopy enable finding of multiple 
solutions to the same nonlinear equation

• Finding bifurcation (and turning) points can be of great 
physical interest.

• Like turning points, the Jacobian is singular at a 
bifurcation point:
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detJ(x⇤) = 0



Bifurcation
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Bifurcation
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Bifurcation
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Bifurcation

• In practice, it is hard to hit the bifurcation point exactly 
while stepping with the homotopy parameter.

• The bifurcation is detected by checking the sign of the 
determinant of the Jacobian.

• If  det       
J

  h  (  x  ,  �  ) =       0   at the bifurcation, then it 
changed from positive to negative (or negative to 
positive) as the homotopy parameter changed. 

• We can find the bifurcation point exactly by solving an 
augmented system of nonlinear equations:

✓
h(x;�)

◆
= 0

detJh(x,�)

• which finds the value of   
x

     and  �    at the bifurcation
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Bifurcation

• Example:

• Find the radius where two circles just touch: 
✓

(x + 3)2 + (x + 1)2 �R
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Bifurcation

• Example:

• Find the radius where two circles just touch: 
✓

(x + 3)2 + (x + 1)2 R

x) = 1 2 � 2

f(
(x1 � 2)2 + (x2 � 2)2 �R

2

◆

• This is a bifurcation point (from 0 to 2 solutions)

f(x) = 0
detJ(x) = 0

• Find this point by solving the augmented equations
✓

f(x)
fo

J(x)

◆
= 0 r y =

det

✓
x

R

◆
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Bifurcation

• Example:

• Find this point by solving the augmented equations:

✓
f(x)

detJ( )

◆
= 0 for

y =

✓
x

x R

◆

• Newton-Raphson iteration:

yi+1 = yi +�yi

✓
J(x) @

@R f(x) f(x)
�y =r detJ(x) @

@R detJ(x)

◆�
��� i
yi

�
✓

detJ(x)

◆����
yi
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