10.34: Numerical Methods

Applied to
Chemical Engineering

Lecture 9:
Homotopy and bifurcation



Recap

® Quasi-Newton-Raphson methods



backtracking line search



Recap




Good Initial Guesses

® Solving nonlinear equations and optimization require
good initial guesses

® Where do these come from?

® Nonlinear equations can have multiple roots,
optimization problems can have multiple minima.

® How can we find them all?

® The concepts of continuation, homotopy and bifurcation
are useful in this regard.



Continuation

® Example:

® Find the roots of: f(x) = r° — 2z + 1




Continuation

® Example:
® Find the roots of: f(z) = o — 22 + 1
® Guess the roots based on a plot of the function
® casy in |-D, hard in many dimensions

® Transform the problem from an easy to solve one
to the problem we want to solve:

o Let f(z)=2" -2 \z +1
® Find roots as A grows from zero to one
® When A =0, x = —1

® Use solution for one value of A as guess for next



Continuation

® Example:

e Find the roots of: f(x) = r° — 2z + 1
flz) =2 -2z +1

lambda = [ 0:0.01:1 ];
xguess = -1;

for 1 1:1length( lambda )

f=@  x)x .A3 -2 * lambda( i ) * x + 1;

xC 1) = fzeroC @ x ) f(C x ), xguess );

xC1);

Xguess

end;



Continuation

® Example:

® Find the roots of: f(x) = r° — 2z + 1

fl@)=2" -2 +1

-0.9




Continuation

® Example:
® Find the roots of: f(f) =% — 22 +1

® Transform the problem from an easy to solve one
to the problem we want to solve:

e let f(z)=12" -2 \z +1
® When \islarge © = 1/(2X), =V 2\

® Start with large \ and trace backto A = 1
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Continuation

® Example:

® Find the roots of: f(x) = r° — 2z + 1

flo) =a® =22 +1




Continuation

® Example:

® Find the roots of: f(x) = r° — 2z + 1
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Continuation

e Continuation can be used to generate a sequence of good initial

guesses to different problems by varying a parameter by a small
amount.

® Examples:

fluid mechanics problems by varying the Reynolds number

mass transport problems by varying the Peclet number

multicomponent phase equilibria problems by varying

temperature/

Dressure

reaction equi

ibrium problems by varying reaction rates
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Homotopy

® This transformation from one problem to another is
termed homotopy.

® Generically, we seek the roots X" () of an equation:
h(x; \) = M(x) + (1 — \)g(x)
e When A =0, h(x;0)=g(x)
® The roots X" (0) are the roots of g(x)
e When A =1, h(x;1) = f(x)
® The roots X (1) are the roots of f(x)
® There is a smooth transformation from g(x) to f(x)

® ) is varied in small increments from zero to one and the
solution X" (\;) is used as the initial guess for X" (\;11)
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Homotopy

For small changes in the homotopy parameter, the
previous solution will be a good initial guess.

Newton-Raphson like methods can be expected to
converge quickly.

In practice, the function f(x) is associated with the
problem of interest, but the function g(x) is arbitrary.

® |t may be difficult to find a good function g(x)

® Physically based homotopies are usually preferable.
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Homotopy

® Example:

e Find roots of the van der Waals equation of state
given: P — = 0.5

b (e 3) (-9
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Homotopy

® Example:

® Find roots of the van der Waals equation of state

given: P =0.1,7"= 0.5

(s 3\ (. 1\ 8.
f(U):<P|@2><’U—§>—§T—O

® Create the homotopy:
h(v) = Af(0) + (1 = A)g(0)

® with the ideal gas function:

A & A

e )\ =0, ideal gas; A = 1, van der Waals
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Homotopy

® Example:

® Find roots of the van der Waals equation of state

given: P =0.1,17"=0.5

T =

0.5;
P=20.1

)
b

vguess =8 / 3 * T / P;

f=e(Cv)(P+3 ./v.A2) . *(v-1/3)-8/3*T;
g=@ v)P .*v-8/3*T,
h=@(Cv, 1D)1*fCv)+(C1-1)%*g(CvVv);

lambda = [ 0:0.01:1 ];

for 1 = 1:1ength( lambda )

v(i 1)

vguess

fzero(C @C v ) hC v, lambda(C 1 ) ), vguess );
v( 1 );

end;
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Homotopy

Example:

® Find roots of the van der Waals equation of state

given: P =0.1,7"= 0.5
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Homotopy

® Example:

® Find roots of the van der Waals equation of state

given: P =0.1,7"= 0.5

ROCRICRICRI
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Homotopy

® Example
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Arclength Continuation

® Parameterize the roots and homotopy parameter in

terms of the distance travelled along the solution curve:

o X" (A(5)), A(s)

® Determine how to change homotopy parameter from
arclength constraint:

X O+ (A0) =1
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Bifurcation

® Example:

® Find the real roots of f(x) = r° —rx

1.5 /rlz < IO N

0.5 i

f@) ¢ — "7~
05/ r >0

_g1 -0.8 —0!6 —O!4 —0!2 (I) 012 014 016 018 1
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Bifurcation

® Example:

e Find the real roots of f(z) = 2° — rz

L A




Bifurcation

Occasionally, a problem will switch from having | solution
to having many solutions as a parameter is varied.

We have seen how this occurs discontinuously with
turning points.

When additional solutions appear continuously, it is
termed bifurcation.

Bifurcations in a homotopy enable finding of multiple
solutions to the same nonlinear equation

Finding bifurcation (and turning) points can be of great
physical interest.

Like turning points, the Jacobian is singular at a
bifurcation point: det J(x™) = 0
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h(X, )\z’—l) =0

Bifurcation

A L9

7
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h(x, \;) = 0 Bifurcation

A L9

det Jh(X, >\i) =0
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h(x, Ait1) =0

Bifurcation

A L9

7
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Bifurcation

® |n practice, it is hard to hit the bifurcation point exactly
while stepping with the homotopy parameter.

® The bifurcation is detected by checking the sign of the
determinant of the Jacobian.

o If detJp(x,A) = 0O at the bifurcation, then it
changed from positive to negative (or negative to
positive) as the homotopy parameter changed.

® We can find the bifurcation point exactly by solving an
augmented system of nonlinear equations:

( Lt .S(QA) > =Y

® which finds the value of x and A\ at the bifurcation
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Bifurcation

® Example:

® Find the radius where two circles just touch:

(@374 (1)~ R
f(x) = ( (21— 2)2 + (29 — 2)2 — R )

too big too small



Bifurcation

® Example:

® Find the radius where two circles just touch:

(3 (1) R
f“”‘<¢m—zy—¢m—zﬂ—32>

® This is a bifurcation point (from 0 to 2 solutions)

f(x)=0
det J(x) =0

® Find this point by solving the augmented equations

(dgﬁ@>:° for y:(2>

32



Bifurcation

® Example:

(

® Find this point by solving the augmented equations:

(aeatg ) =0 o v=(k)

® Newton-Raphson iteration:

yit1 =Y + Ay;

J(x) o f(x) _ f(x)
V det J(x) %801 t J(x )) Ay@'__( X

Yi
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