MIT OpenCourseWare <http://ocw.mit.edu>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.

5.111 Lecture Summary #12

___ Readings for today: Section 2.9 (2.10 in *3rd ed*) , Section 2.10 (2.11 in *3rd ed*), Section 2.11 (2.12 in *3rd ed*), Section 2.3 (2.1 in *3rd ed*), Section 2.12 (2.13 in *3rd ed*). **Read for Lecture #13:** Section 3.1 (*3rd* or *4th ed*) – The Basic VSEPR Model, Section 3.2 (*3rd* or *4th ed*) – Molecules with Lone Pairs on the Central Atom.

Topics: I. Breakdown of the octet rule **Case 1.** Odd number of valence electrons **Case 2.** Octet deficient molecules **Case 3.** Valence shell expansion **II.** Ionic bonds **III.** Polar covalent bonds and polar molecules

I. BREAKDOWN OF THE OCTET RULE

Case 1. Odd number of valence electrons

For molecules with an odd number of **valence** electrons, it is not possible for each atom in the molecule to have an octet, since the octet rule works by ____________ e⁻s.

__

Example: CH₃

2) $3(1) + 4 =$ valence electrons **H₃C H H C H** 3) $3(2) + 8 =$ electrons needed for octet 4) $14 - 7 =$ bonding electrons

Radical species: molecule with an __________________ electron.

Radicals are usually very reactive. The reactivity of radical species leads to interesting (and sometimes harmful) biological activity.

Some radicals are more stable. For example, NO

NO N O

- 1) Draw skeletal structure
- 2) $5 + 6 = 11$ valence electrons

NO

- 3) $8 + 8 = 16$ electrons needed for octet
- 4) $16 11 = \underline{\hspace{2cm}}$ bonding electrons

Nitric oxide, NO

- an important cell-signaling molecule in humans.
- diffuses freely across cell membranes and signals for the smooth muscle in blood vessels to relax, resulting in vasodilation and increased blood flow.
- a *radical species*, NO has a short lifetime in the body, which makes it an ideal messenger molecule between adjacent cells.
- You may be familiar with a drug that inhibits the breakdown of an NO binding

vasodilation: partner (an enzyme), leading to increased blood flow: ____________

the widening of blood vessels Figure by MIT OpenCourseWare.

Now let's think about molecular oxygen, O2.

What we expect: \circ O

- 2) _______________________ valence electrons
- 3) ________________ electrons needed for octet
- 4) ____________________ bonding electrons
- 5) Add two electrons per bond.
- 6) 2 bonding electrons remaining. Make double bond.
- 7) _______________ valence electrons make lone pairs

Lewis method seems to work here, but in reality O_2 is a ________________!

 $\cdot 0 - 0$

We need molecular orbital (MO) theory (Lecture #14).

Case 2. Octet deficient molecules

Some molecules are stable with an **incomplete** octet. Group 13 elements ____ and _____ have this property.

 $F = B - F$ Consider BF3

First, let's write the Lewis structure that achieves octets on every atom.

- 2) $3 + 3(7) =$ valence electrons
- 3) $8 + 3(8) =$ electrons needed for octet

 F^\bullet

- 4) $32 24 =$ bonding e-s 5) assign two electrons per bond.
- 6) $8 6 = 2$ extra bonding electrons $7)$ $24 8 = 16$ lone pair electrons
- 8) calculate formal charges:

 $FC_B = 3 - 0 - (1/2)(8) = -1$

$$
FC_{FDB} = 7 - \underline{\hspace{1cm}} - (1/2)(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}
$$

$$
FC_F = 7 - \underline{\hspace{1cm}} - (\frac{1}{2})(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}
$$

But experiments suggest that all three B-F bonds have the same length, that of a

bond.

The formal charges are more favorable for this structure.

Case 3. Valence shell expansion

Elements with $n = or > 3$ have empty $\frac{1}{n}$ - orbitals, which means more than eight electrons can fit around the central atom.

Expanded valence shells are more common when the central atom is ______ and is bonded to small, highly electronegative atoms such as O, F, and Cl.

-
-

Consider PCl₅

To make five P-Cl bonds, need ______ shared electrons. So 40 – 10 = 30 lone-pair electrons.

Consider CrO₄₂-

8) calculate formal charges:

 $FC_{Cr} = 6 - 0 - (1/2)(8) = +2$ $FC_O = 6 - (1/2)(2) = -1$

Total charge = $2 + 4(-1) = -2$

But experimentally, Cr-O bond length and strength are between that of a single and double bond!

 $FC_{Cr} = 6 - 0 - \frac{1}{2}12 = 0$ $FC_{ODB} = 6 - 4 - (1/2)4 = 0$ $FC_O = 6 - 6 - (1/2)2 = -1$

Valence shell expansion around Cr results in ________ formal charge separation. More stable Lewis structure.

II. IONIC BONDS

Ionic bonds involve the complete ________________ of (one or more) electrons from one atom to another with a bond resulting from the electrostatic attraction between the cation and anion.

Consider the formation of NaCl from the neutral atoms, Na and Cl.

The mutual attraction between the oppositely-charged ions releases energy. The net energy change for the formation of NaCl is a **decrease** in energy.

We can calculate the Coulomb attraction based on the distance between the two ions (assume here that the ions are point charges):

$$
U(r) = \frac{z_1 z_2 e^2}{4\pi \epsilon_0 r}
$$
 for 2 unlike charges,
z = charge numbers of the ions and
e = absolute value of the charge of an e⁻ (1.602 X 10⁻¹⁹ C)

Calculate $U(r)$ for Na⁺ and Cl⁻. NaCl has a bond length $(r) = 2.36$ Å.

$$
U(r) = \underbrace{() () (\ }_{4\pi (8.854 \times 10^{-12} \text{ C}^2 J^{-1} m^- 1) (}) =
$$
\nConvert to kJ/mol

\n
$$
U(r) = -9.724 \times 10^{-19} J \times \underline{\hspace{2cm}} \times \underline{\hspace{2cm}} =
$$

The discrepancy results from the following approximations:

- ignored repulsive interactions. Result: ΔE_d than experimental value.
- treated Na^+ and Cl^- as $______________________$.
- ignored quantum mechanics.

This simple model is applicable only to very ionic bonds.

III. POLAR COVALENT BONDS

Perfectly-ionic and perfectly-covalent bonds are the two extremes of bonding. In reality, most bonds fall somewhere in the middle.

A **polar covalent** bond is an ____________ sharing of electrons between two atoms with different electronegativities (χ) .

Consider H-Cl versus H-H (Pauling electronegativity values are given):

H - Cl
$$
\chi_H = 2.2
$$
 $\chi_{Cl} = 3.2$

$$
H^{\delta_+}\text{-}\operatorname{Cl}^{\delta_-}
$$

where δ is fraction of a full charge (e) that is asymmetrically distributed.

H – H μ is a "perfectly" covalent bond, $\delta = 0$.

Dipole moment

Asymmetric charge distribution results in an electric dipole, two unlike charges separated by a finite distance.

We can quantify charge separation by defining a dipole moment, $\vec{\mu}$.

In chemistry, the arrow points toward the negative charge in a polar bond.

In large organic molecules and in biomolecules, such as proteins, we often consider the number of polar groups within the molecule.

