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Lecture #10:  The Time-Dependent Schrödinger Equation 
 

Last time: 
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 dimensionless variables

â = 2−1/2 i ̂p + ̂x( ) annihilation operator

a† = 2−1/2 −i ̂p + ̂x( ) creation operator
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â† + â( )n
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âψ v = v[ ]1/2ψ v−1  , e.g. â3ψ v = v v − 1( ) v − 2( )[ ]1/2 ψ v−3  
â†ψ v = v + 1[ ]1/2ψ v+1  

 , e.g. a†10
ψ v = v + 10( )… v + 1( )[ ]1/2 ψ v+10  

 
N̂ = â†â, N̂ψ v = vψ v

ψ v = [v!]−1/2 (a†)ψ 0, ψ 0  is a known Gaussian
 

Operator algebra, to combine terms like â†ââ, ââ†â, âââ†, is based on â, â†⎡⎣ ⎤⎦ = 1 . 
 

What is so great about â, â
†
? 

It is born with its selection rule and the values of all integrals attached! 
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Suppose you want 

 
dx∫ ψ v+2

* Opψ v ≠ 0 ?  Then Op  could be â†2  or â†3â  (in any 
order). 
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Suppose you have p̂3  and want the ψ v+3 p̂
3ψ v  integral?  Only a total of 3 

multiplicative â or â†  factors are possible in p̂3 , thus you only keep the â†3  term. 
Recall: semi-classical method based on pclassical(x) = [2µ(E – V(x))]1/2 
 * node spacing 
 * amplitude envelope of ψ(x) 
 * quantization condition 

 
The REAL Schrödinger Equation is the Time Dependent Schrödinger Equation (TDSE). 
 
The ordinary time-independent Schrödinger Equation, Ĥψ = Eψ , is a special case. 
 
Eigenstates do not move, but they encode motion. 
 

 
TDSE: ĤΨ(x,t) = i ∂Ψ

∂t
 

 
We usually use Ψ for solutions of TDSE and ψ for solutions of the ordinary SE. 
 
Suppose we have a complete set of solutions of ordinary SE 
 

Ĥψ n = Enψ n Ĥ  is independent of time( ) , 
 
then 
 

 
Ψn (x,t) = e

− iEnt ψ n (x)   
 
satisfies the TDSE. 
 

 

i ∂Ψ
∂t

= (i) −i


⎛
⎝⎜

⎞
⎠⎟ Ene

− iEnt ψ n (x)

= En e
− iEnt ψ n

this is Ψn (x,t )
 

= EnΨn (x,t)

ĤΨ(x,t) = Ĥψ ne
− iEnt  = Enψ ne

− iEnt 

 

does not operate on  e− iEnt   
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Thus it is evident that, for Ĥ  independent of t, if ψn(x) is a solution of the SE, then 

 Ψn (x,t) = e
− iEnt ψ n (x)  is a solution of the TDSE. 

 
The TDSE is the truth, the whole truth, and nothing but the truth of Quantum Mechanics.  
However, we will use the TDSE in 5.61 only occasionally. 
 
Here are some very important properties of solutions of the TDSE. 
 
1) The probability density |Ψ*(x,t)Ψ(x,t)|, exhibits motion only if the Ψ(x,t) contains a 
linear combination of eigenstates that belong to at least two energy eigenvalues, E1 ≠ E2. 
 

 

Ψ(x,t) = c1e
− iE1t ψ1 + c2e

− iE2t ψ 2

Ψ*(x,t)Ψ(x,t) = c1
2 ψ1

2 + c2
2 ψ 2

2

+c1
*c2e

− i(E2−E1 )t ψ1
*ψ 2

+c1c2
*e+ i(E2−E1 )t ψ1ψ 2

*

 

The first two terms are independent of t.  The second two terms are oscillatory.  The second 
two terms can be re-expressed as 
 

 2Re c1
*c2e

− i(E2−E1 )t ψ1
*ψ 2⎡⎣ ⎤⎦  

Re means “the real part.”  If C is a complex number 
 

ReC = 1
2
C +C*( )  

 
and in the above Ψ∗Ψ equation, the fourth term is the complex conjugate of the third term 
(see McQuarrie, Chapter A) and 
 

 
ω12 =

E1

− E2


. 

 
For the special case that c1

* = c2 = 2
−1/2  and ψ1 and ψ2 are real 

 

 

Ψ*(x,t)Ψ(x,t) = 1
2
ψ1

2 + 1
2
ψ 2

2

static
 

+ cosω12t( ) ψ1ψ 2
regions of
+ and – 

amplitude

 
. 

 
It is clear that the only way we get motion is from a Ψ(x,t) that contains at least two 
eigenfunctions of Ĥ that belong to two different energy eigenvalues.  The TDSE is the only 
way we make contact with the familiar world of moving objects. 
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There are several easily computed observable dynamical properties that we can use to gain 
insight into the ways in which Quantum Mechanics encodes motion and to discover what are 
the Quantum Mechanical laws for motion. 
 
2) If we integrate Ψ*(x,t)Ψ(x,t) over x, we have a simple normalization integral.  Since 
probability is conserved, the normalization integral should not be (and is not) time-
dependent, no matter how many ψi are present in Ψ.  For the two-state superposition state 
 

∫ dxΨ*(x,t)Ψ(x,t) = c1
2 + c2

2 ! 
Probability is conserved (and orthogonality simplifies matters). 
 
The c1

*c2ψ1
*ψ 2  terms go away because ψ1 is orthogonal to ψ2.  The |ψ1|2 and |ψ2|2 terms become 

1 because the ψi are normalized to 1. 
 
3) Expectation values of x̂  and p̂ .  Here is an example where the integrals xv,vʹ and pv,vʹ 
become important. 
 

 

x̂ t = ∫ dxΨ*(x,t)x̂Ψ(x,t)

= c1
2 ∫ dxψ1

*x̂ψ1 + c2
2 ∫ dxψ 2

* x̂ψ 2

+c1
*c2e

− iω21t ∫ dxψ1
*x̂ψ 2

+c1c2
*e+ iω21t ∫ dxψ1 x̂ψ 2

*

= c1
2 x11 + c2

2 x22
stationary

 
+ 2Re c1

*c2e
− iω21t x12( )

motion
 

xij notation

 
 
Note that, for a harmonic oscillator, x11 = 0, x22 = 0 and x12 ≠ 0 only if v2 = v1 ± 1. 
 
For a particle in a box, you can use symmetry to decide whether x11, x22, and x12 are zero.  It 
often helps to shift the box so that it goes from –a/2 < x < a/2 (symmetric) rather than 0 < x < 
a.  For all PIB, x11 = x22 = xcenter of box, but x12 = 0 if both quantum numbers are even or both are 
odd.  WHY?  The only case where 〈x〉t is time-dependent for PIB is when Ψ contains at least 
one even-n and one odd-n eigenstate.  We also saw this for the wave equation. 
 
What about p̂ t ?  It is possible to show (you should show this) that whenever x̂ t  is time-
dependent, so too is p̂ t  and  
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m
d x t

dt
= p t , 

 
which is one of Newton’s laws.  The motion of the center of any wavepacket is governed by 
Ehrenfest’s Theorem 
 

 

d r t

dt
= 1
m
p t

r , p are 3-D vectors( )
and

d p t

dt
= − ∇V r( ) t

 

 
These two equations express both of Newton’s Laws. 
 
4) Another useful measure of dynamics is the “survival probability”, 
 

P(t) = ∫ dxΨ*(x,t)Ψ(x,0)
2

, 
 
which provides a measure of how rapidly a time-dependent state departs from (and returns 
to) the t = 0 form of itself.  For the two-component state 
 

 

Ψ(x,t) = c1ψ1e
− iE1t  + c2ψ 2e

− iE2 t 

Ψ(x,0) = c1ψ1 + c2ψ 2

∫ dxΨ*(x,t)Ψ(x,0) = c1
2 eiE1t  + c2

2 eiE2 t 
 

square this to get P(t) 
P(t) = c1

4 + c2
4 + c1

2 c2
2 eiω21t + e− iω21t⎡⎣ ⎤⎦

= c1
4 + c2

4 + 2 c1
2 c2

2 cosω 21t
 

For c1 = c2  
 

P(t) = 1
2
1+ cosω 21t[ ] , 

which oscillates between 1 and 0.  Is it ever possible (at some t) for P(t) < 0? 
 
5) Recurrence 
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Whenever you have a model system where the energy levels (or energy level differences) are 
an integer multiple of a common factor, as for 
 

(i) particle in a box, En = E1 n2 
 
(ii) harmonic oscillator, Ev+n – Ev = hωn 
 
(iii) rigid rotor, EJ = hcBJ(J + 1), thus EJ+1 – EJ = 2hcB[J + 1] 

 
you get perfect, 100% recurrences at a series of times that are integer multiples of 
 

 
tgrand recurrence =

h
E1

or h
ω

or h
2hcB

 

Why?  Because, at these special times, every eiω jkt  phase factor is +1.  Interesting things also 
occur at tgr/2. 
Recurrence is a very useful experimental signature and can be a basis for very clever 
experimental manipulations of dynamics. 
 
Next Lecture:  we will examine some time evolving Ψ(x,t) “wavepackets” in PIB and HO 
potentials in order to gain an intuitive understanding of how what is familiar in classical 
mechanics appears in quantum mechanical systems. 
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