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Lecture #20: Hydrogen Atom I 
 
Read McQuarrie, Chapter 7 
 
Last time: 
 
Rigid Rotor:  Universal θ,φ dependence for all central force problems. 
 
V(θ,φ) = 0 for rigid rotor  

!
J( )   

 

 

J!
2
ψ JM = "2J(J +1)ψ JM

J! zψ JM = "Mψ JM

J! ±ψ JM = " J(J +1)−M (M ±1)[ ]1/2ψ JM ±1

Ji , J j⎡⎣ ⎤⎦ = i" εijk
k
∑ Jk

 
# of Nodes for real part of ψJM in x,y plane ↔ M 
 
# of Nodal surfaces ↔ J 
 
 
Today:  Hydrogen Atom 
 
An exactly soluble quantum mechanical problem.  Every property is related to every other 
property via the quantum numbers: n, ℓ, mℓ.  This is what we mean by “structure.”  It is like 
saying that a building is more than the bricks it is made up of. 
 
Gives us “cartoons” for understanding more complex systems. 
 
1. H-atom Schrödinger Equation 
  separation of variables yields  ψ r,θ,φ( ) = Rn(r)Y

m θ,φ( )  expressed as a product  
 
2. Pictures of orbitals 
  separate pictures for  Rn(r)  and  Y

m θ,φ( )  
# nodes, node spacing, (λ = h/p), envelope for Rnℓ(r) (semi-classical) 
 
3. Expectation values of rk — interpretive picture via neffective : scaling, inter-relationships 
 
4. Evidence for “electron spin” 
 
5. spin-orbit term in H! . 
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Lecture #21 will cover 
 
H atom spectra (rigorous selection rule:  ∆ℓ = ±1).  Model for Rydberg states of everything 
Scaling laws 
Rydberg series:  “ontogeny recapitulates phylogeny” (Robert Mulliken) 
Quantum Defects = Scattering 
 
l. H-atom Schrödinger equation 
 

 
spherical polar coordinates 

 
 
 

µH =
(me− )(mp+ )

mH
mH = me− +mp+

 

 
  

 

φ starts (φ = 0) at +x and increases in direction 
toward y.  Range of φ is 0 ≤ φ ≤ 2π 
 
 
θ starts (θ = 0) at +z and increases in direction 
toward xy plane, 0 ≤ θ ≤ π 

 

attractive
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(  contains same 
terms as a rigid rotor 
plus r-dependence) 
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volume element for spherical polar coordinates: 
 dx dy dz = r2 sin θ dr dθdφ 
Laplacian: 
 

∇̂2 = 1
r2

∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟ + 1

r2 sinθ
∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ + 1

r2 sin2 θ
∂2

∂φ2
. 

Looks complicated, but there are two parts to T̂ , radial and angular (and we have solved the 
universal angular part already). 
 
So we can simplify the Schrödinger Equation (multiplied by 2µHr2) to 
 

 
−!2 ∂

∂r
r2 ∂

∂r
⎛
⎝

⎞
⎠ + L"

2
+ 2µHr

2 V (r) − E[ ]⎧
⎨
⎩

⎫
⎬
⎭
ψ = 0  

 
It is easy to show L̂2,  f (r)⎡⎣ ⎤⎦ = 0  for any f(r) because L̂2  and f (r) involve different coordinates. 
 
Thus, we expect three quantum numbers for ψ:  ψ ,m ,n  

a radial quantum number 
 
Expect to be able to factor ψnm

= Rn (r)Y
m θ,φ( ) .  Basis for separation of variables. 

 

  
−h2 ∂

∂r
r2 ∂

∂r
⎛
⎝

⎞
⎠ + 2µHr

2 V (r) − E[ ]⎡
⎣⎢

⎤
⎦⎥
R(r)Yℓ

m θ,φ( ) = −L"
2
R(r)Yℓ

m θ,φ( )  

 

Multiply on left by 1
ψ

, cancel unoperated-on factors, and integrate over θ,φ.   Rearrange to put 

r-dependence on LHS and θ,φ-dependence on RHS. 
 

  

1
R(r)

−! 2 ∂
∂r

r2 ∂
∂r

⎛
⎝
⎜

⎞
⎠
⎟ + 2µHr

2 V (r) − E[ ]
⎡

⎣⎢
⎤

⎦⎥
R(r)

= −
1

Yℓ
m θ,φ( )

L#
2
Yℓ

m θ,φ( )
eigenfunction

of L̂2

$ %&&&&
= −! 2ℓ ℓ + 1( )

known separation
constant

$ %&&&&&&  

Usual separation argument here.  LHS only r, RHS only θ,φ.  Get a radial Schrödinger equation 
and an already solved angular Schrödinger equation. 

all θ,φ dependence 
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Radial Schrödinger Equation 
 

 

1
R(r)

−!2 ∂
∂r

r2 ∂
∂r

⎛
⎝

⎞
⎠ + 2µHr

2 V (r) − E[ ]⎡
⎣⎢

⎤
⎦⎥
R(r) = −!2ℓ(ℓ + 1)  

 
rearrange, divide by 2µHr2 and multiply by R(r) on left: 
 

 

−
!2

2µHr
2
∂
∂r

r2 ∂
∂r

⎛
⎝
⎜

⎞
⎠
⎟ + V (r) + !

2ℓ ℓ + 1( )

“centrifugal
barrier”# $% &%

2µHr
2

call this Vℓ (r ) “effective potential”
(actually contains angular kinetic
 energy)

' ())))))))))
− E

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

R(r) = 0
 

 

−  2

2µHr
2
∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟ + V (r) − E

⎛
⎝⎜

⎞
⎠⎟
R (r) = 0  

The solutions to this equation will depend on n 
and ℓ:  Rnℓ(r). 

 
Can simplify even more using χℓ(r) rather than Rℓ(r):  
 

 

1
r
χ(r) ≡ R(r). After some algebra:

− 2 ∂2

2µH ∂r2 + V(r) − E
⎡

⎣
⎢

⎤

⎦
⎥ χ(r) = 0

 

 
 
 
 
Looks like ordinary 1-D r,pr Schrödinger 
Equation! 

 
[But we will mostly not use this super-simplified form of the radial equation in 5.61.]  It looks 
very similar to our other 1-D well Schrödinger Equations, but Vℓ(r) is neither free-particle nor 
Harmonic Oscillator, and the r = 0 boundary condition is subtle. 
 
We know that there can easily be found a complete (infinite) set of Rnℓ(r) eigenfunctions. 
 
Note that, although the radial wavefunction does not depend on θ,φ, the form of Rnℓ(r) does 
depend on the value of the ℓ quantum number.  Recall the Associated Legendre Polynomials.  
The Θ(θ) part of  Y

m θ,φ( )  depends on the value of m. 
 
2. Pictures of orbitals 
 
ψ(r,θ,φ) specifies a complex # at each point in 3-D space.  Difficult to plot on a 2-D page. 
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Usually plot 

  

Rn (r)
specific
system

 
 separately from 

 
Y

m θ,φ( )
universal
 

. 

 
Simple to plot Rnℓ(r) vs. r.  A lot of insight is encoded in the Rnℓ(r) plot. 
 
We have already looked at  Y

m θ,φ( )  polar plots. 
 
[Clever ways, dot-density and contours, to plot dependence of ψ or ψ*ψ on all 3 variables (see 

McQuarrie text).] 
 
Dependence of energy levels on reduced mass: 
 

Enml
= −ℜhc

n2
   ℜ is the “Rydberg constant”, consisting entirely of fundamental constants. 

 ℜ H = 109737.319 cm–1 µH
µ∞

⎛
⎝⎜

⎞
⎠⎟
= 109679  cm–1 for H 

 

µ∞ =
m

e−
m∞

m
e−
+ m∞

= m
e−

 
Ask: what is minimum possible value of µ? positronium (an 
electron and a positron):  µ = m

e−
2 . 

Maximum value is µ∞ = me−  for nucleus with infinite mass. 
 
Agree perfectly with Bohr atom energy levels but the wavefunctions are certainly not circular 
orbits (as predicted by the Bohr model)!  Also, Bohr ruled out ℓ = 0. 
 
Form of Rnℓ(r) 
 
 # radial nodes is n – 1 – ℓ (no radial nodes for 1s, 2p, 3d, etc.) 
 (# angular nodes for ψ is ℓ, total # nodes is n – 1, but E does not increase in order of total 

# of nodes).  This is not surprising because the θ,φ part is independent of the r part. 
 
Now comes some amazing stuff!   
 
 1-D semi-classical interpretation of node-spacing in Rnℓ(r) from λr(r) = h/pr(r) 

 − 
2

2µH
∂2

∂r2
+ V (r) − En

⎡

⎣
⎢

⎤

⎦
⎥χn (r) = 0  equation. 

 pr,classical (r) = 2µH En − V (r)( )⎡⎣ ⎤⎦
1/2

.  You know Vℓ(r)! Therefore, you know pr,classical(r). 
Now you need to know what to do with this knowledge. 

 
At small r, innermost node spacing is approximately independent of n.  This is an important but 
unexpected simplification.  
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Non-Lecture: Defer to Lecture #21 
3. Expectation values of integer powers of r.  a0 is Bohr radius:  a0 = 0.0529 nm 
 
 k rk

nm
 

 

2 
a0
2n4

Z 2
1 + 3

2
1 −
 ( + 1) − 1

3
n2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 

 1 
a0n

2

Z
1 + 1

2
1 −  ( + 1)

n2
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

 

(H-atom and one-electron 
ions) –1 

Z
a0n

2  

 –2 
Z 2

a0
2n3( + 1 / 2)

 

 –3 
Z 3

a0
3n3 ( + 1 / 2)( + 1)

. 

 
We use these simple formulas to get (or guess) the n,ℓ-scaling of all r-dependent electronic 
quantities, even for non-Hydrogenic systems. 

In
hc

 is energy (in cm–1) required to ionize from the nth energy level 

Note that Ionization Energy = In = En=∞ −En > 0 . 
 

 In = 0 + Z 2ℜhc
n2

 

 
solve for n. 
 

 
 

neffective =
ℜhc
In

⎡

⎣
⎢

⎤

⎦
⎥

1/2

r n = a0n
2

Z
3
2
−
  + 1( )
2n2

⎧
⎨
⎩

⎫
⎬
⎭

r 1s =
a0
Z
3
2

reffective =
a0
Z

ℜhc
In

3
2
−
  + 1( ) In
2ℜhc

⎧
⎨
⎩

⎫
⎬
⎭

 

��������������������
E1 = 0

E3 = � 1
9<hc

E2 = � 1
4<hc

E1 = �<hc

In is ionization 
energy from nth 
energy level 

For H, n is integer.  For 
everything else, n is not integer 
but changes as energy 
increases in steps of 1. 

replacing  
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Obtained by plugging neffective into 〈r〉nℓ. 

neffective =
ℜhc
In

⎡

⎣
⎢

⎤

⎦
⎥

1/2

 

 

r n =
a0n

2

Z
3
2
− ( + 1)

2n2
⎧
⎨
⎩

⎫
⎬
⎭

 

 

 

rnℓ
effective =

a0
Z
ℜhc
In

neffective
" #$

3
2
−
ℓ(ℓ + 1)
2

In
ℜhc{ }  

Use Inℓ to estimate rn
effective  via neffective.  The value of neffective is the link among all electronic 

properties of an atom. This is what we mean by “structure”. 
 
All properties of highly excited electronic states of atoms and molecules are inter-related or 
estimated in this way.  Intuition is better than memorization (this will be covered more in 
Lecture #21)!   
End of Non-Lecture 
4. Need to invoke a new kind of angular momentum:  e– spin 
 
Zeeman effect:  energy levels are split in a magnetic field due to the magnetic dipole moment 
associated with circulating charge. 
 

 

!m = − e
2me

L"
#!

 
This gives a new potential energy term 
 

 

Vmag = − !m ⋅
!
B

= e Bz
2me

L̂z

"mℓ
$%

 
Evaluate the effect the magnetic field has on   Enm

 using perturbation theory.  Since  L̂z  has only 
∆mℓ = 0 matrix elements, we can say that  
 

 E
Zeeman = Emℓ

(1) . 

(We understand L in terms of 
 and  in terms of current in 

a circular orbit) 
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Expect, for B-field along z, z-polarized VUV radiation excites ∆mℓ = 0 transitions and x,y 
polarized radiation excites ∆mℓ = ±1 transitions. 
 

 
 
In non-zero B-field, expect to see the single zero-field 2p ← 1s transition split into 1, 2, or 3 
lines depending on light polarization with respect to direction of magnetic field.  How many for 
z-polarized light?  How many for x or y polarized light?  How many for light linearly polarized 
somewhere between x and z?  What is the ∆ML selection rule?  Where does it come from? 
 
Actually see many more components.  Why? For ℓ = 1, s = 1/2 and g/ = 1, gS = 2, expect 5 levels:  
(–1,–1/2), (0, –1/2), [(–1, +1/2), (+1, –1/2)], (0, 1/2), and (1, 1/2).  The bracket includes two 
mℓ, ms components that are unexpectedly degenerate. 
 
Stern-Gerlach Experiment 
 
atomic beam through magnetic field, the strength of which varies linearly in a direction ⊥ to the 
direction of the atomic beam.  
Different deflection of different m-components.  Beamlets! 
 
See unexpectedly too many beamlets. 
 
5. Finally,  we can understand the very small zero-field splitting in 2p ← 1s 
transition as arising from “spin-orbit” term in  H! . 
 

 H!
SO

∝ ℓ ⋅ s  
  [
!
ℓ, !s ]= 0  because ℓ  and s operate on different coordinates 

j ≡ ℓ + s 
j2 = ℓ2 + s2 +2ℓ · s 

 

2p
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�
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 ⋅ s = 1
2

j2 − 2 − s2⎡⎣ ⎤⎦ =  zsz +
1
2
+s− + −s+( )

spoils m ,ms

  
 

You show that  ⋅ s, j
2⎡⎣ ⎤⎦ =  ⋅ s,2⎡⎣ ⎤⎦ =  ⋅ s, s2⎡⎣ ⎤⎦ =  ⋅ s, jz⎡⎣ ⎤⎦ = 0  

 
 coupled uncoupled 
Basis sets 

 

jℓsm( ) j
all are good

quantum numbers

"#$ %$
 vs.  (ℓmℓ sms) (mℓ and ms are “spoiled” by H!

SO
).  

 

 H!
SO

 (jℓsm, good) vs.  H!
Zeeman

 (ℓmℓsms good). HSO and HZeeman fight each other. 
 
6. Stern-Gerlach Experiment 
 

 
 
Magnetic field in z-direction 
Pole pieces with slanted ends in y direction 
 
Bz = Bz

0 −αy( ) ẑ  
V (y, z) = –µ ⋅B = –µz Bz

0 −αy( )  
Force (y) = − dV

dy
= –µzα = +

e
2me

L̂zα
 

 
µ̂ = −

e
2me

L̂
 

Atoms follow equi-potential 
 
m > 0 high field seeking 
m < 0 low field seeking  
 

Atomic Beam

z
m = +1

m = 0

m = –1

x

“coupled” vs. 
“uncoupled” 

(force ⊥ to beam 
propagation 
direction) y 
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2 Kinds of Experiment 
 
A. Single Stern-Gerlach beam for H in 1s? 
 Expected no deflection or splitting of beam because ℓ = 0 
 
 Observed two beam-lets, ms = +1/2 and ms = –1/2! 
 
B. Double Stern-Gerlach 
 
 Split beam into ms = 1/2 and ms = –1/2 beam-lets 
 
 Now put one beam-let through an identical S-G setup, but where the z-axis of 

the magnets is tilted relative to the original z-axis. 
 
 Get two beam-lets, even though input beam to the second S-G apparatus had 

been pre-selected to be in a single ms state!  What postulate explains this? 
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