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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

5.61 Physical Chemistry I 
Fall, 2017 

Lecture 22: Helium Atom‡ 

Read McQuarrie: Chapter 7.9, 9.1–9.5 

Now that we have treated the Hydrogen-like atoms in some detail, we now proceed 
to discuss the next-simplest system: the Helium atom. In this situation, we have two 

6z 

r lr
2

M 
✓R 

y-

x U rr
1 

electrons – with coordinates r
1 and r

2 – orbiting a  nucleus  with  
charge Z = 2  located  at  the  point  R. Now, for the hydrogen 
atom we were able to ignore the motion of the nucleus by trans-
forming to the center of mass. We then obtained a Schrödinger 
equation for a single e↵ective particle – with a reduced mass 
that was very close to the electron mass – orbiting the origin. 
It turns out to be fairly di cult to transform to the center of 
mass when dealing with three particles, as is the case for Helium. 

However, because the nucleus is much more massive than either 
6z 

of the two electrons (M
Nuc ⇡ 7000m

e

) it is  a  very  good approx-
imation to assume that the nucleus sits at the center of mass of 
the atom. In this approximate set of COM coordinates, then, rr2 Nucleus-fixed 
R=0 and the electron coordinates r

1 and r
2 measure the distance I 

yn -between each electron and the nucleus. Further, we feel justified 
in separating the motion of the nucleus (which will roughly cor- x 
respond to rigidly translating the COM of the atom) from the r r1 
relative motion of the electrons orbiting the nucleus within the COM frame. Thus, in what 
follows, we focus only on the motion of the electrons and ignore the motion of the 
nucleus. 

We will treat the quantum mechanics of multiple particles (1, 2, 3 . . . ) in much the same 
way as we described multiple dimensions. We will invent operators r̂

1

, r̂
2

, r̂
3

,. . . and associ-
ated momentum operators p̂

1

,p̂
2

,p̂
3

,. . . The operators for a given particle (i) will  be  assumed  
to commute with all operators associated with any other particle (j): 

[r̂
1

, p̂
2

] = [p̂
2

, r̂
3

] =  [r̂
2

, r̂
3

] = [p̂
1

, p̂
3

] =  · · · ⌘  0 

Meanwhile, operators belonging to the same particle will obey the normal commutation 
relations. Position and momentum along a given axis do not commute: 

[x̂
1

, p̂
x1 ] =  i} [ŷ

1

, p̂
y1 ] =  i} [ẑ

1

, p̂
z1 ] =  i} 

‡
Lecture Notes originally written by Professor Troy Van Voorhis 
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while all components belonging to di↵erent axes commute: 

x̂
1

ŷ
1 = ŷ

1

x̂
1 p̂

z1 ŷ1 = ŷ
1

p̂
z1 p̂

z1 p̂x1 = p̂
x1 p̂z1 etc. 

As you can already see, one of the biggest challenges to treating multiple electrons is the 
explosion in the number of variables required! 

In terms of these operators, we can quickly write the Hamiltonian for the Helium atom: 

Kinetic Energy Nucleus-Electron 1 Electron-Electron 
of Electron 1 Attraction Repulsion 

AK AK6 
A A 

2 2 2p̂ p̂ Ze
A 
2 1 Ze2 1 e

A
A 1 

H ⌘ 1 + 2 +b
2me 2me 4⇡"

0 r̂1 4⇡"
0 r̂2 4⇡"

0 |r̂1 r̂
2

|
@ 
@@R 

Kinetic Energy Nucleus-Electron 2 
of Electron 2 Attraction 

This Hamiltonian looks very intimidating, mainly because of all the constants (e, m
e

, " 
0

, 
etc.) that appear in the equation. It is therefore much simpler to work everything out in 
atomic units: 

p̂2

1 p̂2

2 Z Z 1 
H ⌘ + +b

2 2 r̂
1 r̂

2 |r̂
1 r̂

2

| 
r2

1 r2

2 Z Z 1 
= + 

2 2 r̂
1 r̂

2 |r̂
1 r̂

2

| 

Once Schrödinger had solved the Hydrogen atom, it was generally believed that the solu-
tion of the Helium atom would follow not long afterward. However, scientists have tried for 
decades to solve this three body problem without succeeding. Very, very accurate approxi-
mations were developed, but no exact solutions were found. As it turns out, even with the 
simplifications described above it is impossible to determine the eigenstates of the Helium 
atom. This situation is common in chemistry, as most of the problems we are interested in 
cannot be solved exactly. We therefore must resort to making approximations, as we will do 
throughout the remainder of this course. 
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Non-Interacting Electron Approximation 

For Helium, the first thing we notice is that the Hamiltonian becomes separable if we neglect 
the electron-electron repulsion term: 

2 2 2 2r
1 r

2 Z Z r
1 Z r

2 Z 
H

ind = = = H
1 + H

2

2 2 r
1 r

2 2 r
1 2 r

2| 
Electron 1

{z } | 
Electron 2

{z }

Thus, if we neglect the interaction between the electrons, the Hamiltonian reduces to the sum 
of two hydrogenic atom Hamiltonians (with Z = 2). We have experience with Hamiltonians 
of this form. For example, if we had a 2D Harmonic oscillator, we would write 

1 @ 1 1 @2 1 
!2 2 2H

ind = + 
x

x + !
y 
2 y = H

x + H
y

. 
2 @x2 2 2 @y2 2 

Here the Hamiltonian separates into two 1D Harmonic oscillators and we can immediately 
write the wavefunctions as products of the 1D oscillator eigenfunctions: 

n

x

n

y (x, y) =  (x) (y)
n

x n

y 

with energies that are the sum of the energies of the two oscillators 
✓ 

1
◆ ✓ 

1
◆ 

E
n

x

n

y = !
x n

x + + !
y n

y + 
2 2 

By analogy (Hamiltonians Add ! Wavefunctions Multiply ! Energies Add), we can 
immediately write the correct form for the eigenfunctions of this non–interacting electron 
Hamiltonian above: 

n1 ` 1m1ms1;n2 ` 2m2ms2 (r1

, a
1

; r
2

, a
2

) =  
n1 ` 1m1ms1 (r1

, a
1

) 
n2 ` 2m2ms2 (r2

, a
2

) 

Here we have introduced a few notation conventions that it is important to spell out. First, 
we begin here the convention that Capital Greek letters will be used for wavefunctions that 
involve more than one–electron (like the wave function for Helium) while lower case Greek 
letters will be used for one–electron functions (like the Hydrogen orbitals). Second, we have 
introduced the quantum number m

s to tell us the spin of a given electron. This concept 
was introduced for the Hydrogen atom, but will become increasingly important in what 
follows. By convention, we denote m

s = +1

2 by “↵” and  m
s = 

2

1 by “ ”. We have further 
invented a coordinate, a, that covers the spin degree of freedom for the electron. Thus, the 
normalization and orthogonality conditions for ↵ and can be written: 

Z Z Z Z 
↵⇤( )↵( )d = ⇤( ) ( )d = 1  ↵⇤( ) ( )d = ⇤( )↵( )d = 0  

Wave functions that depend on both space and spin (like the one above) are just shorthand 
for products of (space part) ⇥ (spin part). For example: 

3s↵

(r, ) ⌘ 
3s

(r)↵( ) 
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In addition to knowing the wave functions, the separability of the Hamiltonian allows us to 
immediately write the energies as well: 

Z2 Z2 

E
n1,n2 = E

n1 + E
n2 = + 

2n
1

2 2n
2

2 

where we have made use of atomic units (h = m
e = e = 4⇡"

0 = 1)  to  simplify  our  energy  
expression. Thus, by neglecting the electron repulsion (an approximation) we move from a 
problem that is impossible to solve to one that we can easily solve. 

However, the outstanding question is: how good is this approximation? The easiest way 
to test this is to look at the ground state. This involves putting both electrons in the 1s 
orbital: 

1s;1s

(r
1

, a
1

; r
2

, a
2

) =  
100

(r
1

, a
1

) 
100

(r
2

, a
2

) 

This wave function has an energy 

Z2 Z2 

E
11 = = Z2 = 4  a.u. =  108.8 eV. 

2 2 

How good is this result? Well, we can determine the ground state energy of Helium by 
removing one electron to create He+ and then removing the second to create He2+ . As it 
turns out, the first electron takes 24.6 eV to remove and the second takes 54.4 eV to remove, 
which means the correct ground state energy is 79.0 eV. So our non-interacting electron 
picture is o↵ by 30 eV, which is a lot of energy. To give you an idea of how much energy 
that is, you should note that a typical covalent chemical bond is worth about 5 eV of energy. 
So totally neglecting the electron interaction is not a very good approximation. 

Independent Electron Approximation 

Two steps: 

* antisymmetrization 

* include interaction term 

So what can we do to improve this approximation? Well, first we note that there is a fun-
damental rule about electronic wave functions that is violated by the independent particle 
wave functions. We first note that all fundamental particles can be divided into two classes: 
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fermions, which  have  half  integer  spin, and  bosons, which  have  integer  spin.  Thus,  elec-
trons, for example, are fermions because they have spin-1/2. Meanwhile, a photon is a boson 
because photons have spin-1. There is a very powerful theorem concerning wave functions 
for identical fermions or bosons. 

Spin Statistics Theorem: Any wave function that describes multiple identical fermions 
must be antisymmetric upon exchange of the electrons. Any wave function that describes 
multiple identical bosons must be symmetric upon exchange of the particles. 

The proof of this theorem is well beyond the scope of this course. For the present, we will 
take it as another postulate of quantum mechanics. The result is that any wavefunction we 
build for electrons must be antisymmetric. It is easy to show that the product wavefunction 
described above is not antisymmetric. To  test  antisymmetry,  all  we  have  to  do  is  recall  
that, since the electrons are identical, the labels “1” and “2” are arbitrary. By swapping 
these labels we can’t possibly change the outcome of any measurement. Upon interchanging 
the labels “1” and “2”, an antisymmetric wavefunction will give the same wavefunction back 
times a minus sign. However, our proposed wavefunction does not do this: 

interchange 
1 and 2  

1s↵

(r
1

, a
1

) 
1s (r2

, a
2

) �! 
1s↵

(r
2

, a
2

) 
1s (r1

, a
1

) 6
1s↵

(r
1

, a
1

) 
1s (r2

, a
2

)= 

This is a problem, because we said that all electron wavefunctions must be antisymmetric 
under exchange. We can fix this problem by taking the “ ” combination of the wavefunction  
we proposed and its exchange partner: 

1 
(r

1

, a
1

; r
2

, a
2

) ⌘ p [ 
1s↵

(r
1

, a
1

) (r
2

, a
2

) 
1s↵

(r
2

, a
2

) (r
1

, a
1

)]
1s↵;1s 1s 1s 

2 
p

where the leading factor of 1/ 2 ensures that the new wavefunction is normalized. We check 
that this is antisymmetric: 

1 
(r

1

, a
1

; r
2

, a
2

) ⌘ p [ 
1s↵

(r
1

, a
1

) (r
2

, a
2

) 
1s↵

(r
2

, a
2

) (r
1

, a
1

)]
1s↵;1s 1s 1s 

2 
1 $ 2 1 !p [ 

1s↵

(r
2

, a
2

) 
1s (r1

, a
1

) 
1s↵

(r
1

, a
1

) 
1s (r2

, a
2

)]
2 

1 
= p [ 

1s↵

(r
1

, a
1

) 
1s (r2

, a
2

) 
1s↵

(r
2

, a
2

) 
1s (r1

, a
1

)]
2 

= 
1s↵;1s (r1

, a
1

; r
2

, a
2

) 

Does this new wavefunction give a better energy? As it turns out, this change by itself 
does nothing for the energy prediction. The new wavefunction is a linear combination of two 
degenerate eigenstates of the non-interacting electron Hamiltonian. As we learned before, 
any sum of degenerate eigenstates is also an eigenstate with the same eigenvalue. So, while 

http:antisymmetric.To
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quantum mechanics says we have to make the wavefunction antisymmetric, antisymmetry 
by itself does not a↵ect our energy for Helium. 

The simplest way for us to improve our estimate of the helium ground state energy 
is to consider not the eigenvalues of our approximate Hamiltonian with our approximate 
eigenfunctions, but instead look at the average energy of our approximate function with 
the exact Hamiltonian. That is to say, a better approximation to the energy can be obtained 
from D E Z

Hb = ⇤ 
1s↵;1s Hb 1s↵;1s d⌧1d⌧2 

where d⌧
1 = d⌧

1

d 
1 and similarly for d⌧

2

. We  refer  to  this  picture  as  an  independent 
electron approximation. Within the wavefunction the electrons behave as if they do not 
interact, because we have retained the separable form. However, in computing the energy, we 
recover these interactions in an approximate way by computing the average energy, including 
the interaction. 

We can simplify the average energy pretty quickly: 
✓ 

1 
◆Z

⇤ H
1 + bb H

2 + 
1s↵;1s d⌧1d⌧2 

◆ 
1s↵;1s |r

1 r
2

|
1

✓Z
⇤ =) 2 +  2 +  

1s↵;1s d⌧1d⌧2
1s↵;1s |r

1 r
2

|ZZ
1⇤ 

1s↵;1s 
⇤ =)� 4 

=)� 4 +  

d⌧
1

d⌧
2 + 

1s↵;1s d⌧1d⌧21s↵;1s 
1s↵;1s |r

1 r
2

| 

HHHHHHHHHj 1Z | 
1s↵;1s |2 

d⌧
1

d⌧
2

. |r
1 r

2

| 

We thus have for the average energy: 

D
Hb
E 
= 4 +  

Z | 
1s↵;1s |2 

d⌧
1

d⌧
2

. |r
1 r

2

| 

The first term is simply the non-interacting electron energy from above. The second term is 
the average value of the electron-electron repulsion. Because the integrand is strictly posi-
tive (as one would expect for electron repulsion) this new term will only increase the average 
energy, which is a good thing, since our non- interacting picture gave an energy that was 30 
eV too small! We can further expand the repulsion term based on the antisymmetric form 
of the wavefunction. First, we note that we can factorize the antisymmetric wavefunction 
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into a space part times a spin part: 

1 p [ 
1s↵

(r
1

, a
1

) 
1s (r2

, a
2

) 
1s↵

(r
2

, a
2

) (r
1

, a
1

)]
1s 

2 
1 

=) p [ 
1s

(r
1

)↵(a
1

) 
1s

(r
2

) (a
2

) 
1s

(r
2

)↵(a
2

) 
1s

(r
1

) (a
1

)]
2 

1 
=) 

1s

(r
1

) 
1s

(r
2

) p [↵(a
1

) (a
2

) (a
1

)↵(a
2

)]
2| {z } | {z }

space(r1,r2) 
spin( 1, 2) 

With these definitions, it is easy to verify that the space and spin wavefunctions are individ-
ually normalized. Note, in the absence of a magnetic field, you will always be able to write 
the eigenfunctions of the Hamiltonian in this form because H is separable into a space and 
spin part 

Hb = Hb
space + Hb

spin

, 

with the expectation value of the spin part being (trivially) zero. As a result, eigenfunctions 
of H will always be products of a space part and a spin part as above. With this space/spin 
separation in hand, we can simplify the repulsion term: 

Z | 
1s↵;1s |2 Z | 

space spin

|2 

d⌧
1

d⌧
2 = dr

1

dr
2

da
1

da
2|r

1 r
2

| |r
1 r

2

|
⌘Z | 

space

(r
1

, r
2

)|2 | ⌘
spin

(a
1

, a
2

)|2 

= ⌘ dr
1

dr
2

da
1

da
2⌘|r

1 r
2

|⌘
⌘Z 

⌘
Z | (r

1

, r
2

)|2 
space⌘= | 

spin

(a
1

, a
2

)|2 da
1

da
2 dr

1

dr
2 

1⌘+⌘ |r
1 r

2

|
Z | 

space

(r
1

, r
2

)|2 

= dr
1

dr
2

. |r
1 r

2

| 

The evaluation of this 6 dimensional integral is very tedious (cf. McQuarrie problems 
8-39 and 8-40) but the result is that 

Z | 
space

|2 5Z 5 
dr

1

dr
2 = = a.u. = +34 eV |r

1 r
2

| 8 4 

Adding this average repulsion term to our non-interacting energy gives a ground state esti-
mate of 108.8 eV  + 34 eV =  74.8 eV, which is only 4 eV o↵ of the correct energy. The 
energy is still not very accurate, but at least we are making progress. 

As we have seen already, the independent electron picture is not all that accurate for 
describing atoms. However, chemists are very pragmatic and realize that the ease of solving 
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non-interacting problems is extremely valuable and, as we will soon see, it gives us a picture 
(molecular orbital theory) that allows us to describe a wide range of chemistry. Therefore, 
chemists are extremely reluctant to abandon an independent particle picture. Instead, a great 
deal of work has gone into making more accurate models based on independent particles — 
either by making more sophisticated corrections like the one above or by coming up with a 
di↵erent non– interacting Hamiltonian that gives us a better independent particle model. We 
will spend the next several lectures discussing the qualitative features of electronic structure 
and bonding that come out of this picture. 

EXCITED STATES 

Thus far, we have focused on the ground state of the Helium atom. Before moving on to 
talk about many-electron atoms, it is important to point out that we can describe many 
more properties of the system using the same type of approximation. By using the same 
independent particle prescription we can come up with wave functions for excited states and 
determine their energies, their dependence on electron spin, etc. by examining the wave 
functions themselves. That is to say, there is much we can determine from simply looking 
at without doing any significant computation. 

We will use the excited state 1s2s configuration of Helium as an example. For the ground 
state we had: 

space

(r
1

, r
2

) ⇥ 
spin

(a
1

, a
2

) 

1s

(r
1

) 
1s

(r
2

) p1 [↵(a
1

) (a
2

) (a
1

)↵(a
2

)]
2)=

?

6 
1s 

In constructing excited states it is useful to use stick diagrams to describe electronic 
configurations. Then  there  are  four  di↵erent  configurations  we  can  come  up  with:  
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1. 
2s 6 

? ? 

1s 
6 

2. 
2s 6 

? ? 

1s ? 

3. 
2s 

? ? ? 

1s 
6 

4. 
2s 

? ? ? 

1s ? 

Where the question marks indicate that we need to determine the space and spin wave 
functions that correspond to these stick diagrams. It is fairly easy to make a reasonable 
guess for each configuration. For example, in the first case we might write down a wave 
function like: 

1s↵

(r
1

, a
1

) 
2s↵

(r
2

, a
2

) =  
1s

(r
1

) 
2s

(r
2

)↵(a
1

)↵(a
2

) 

However, we immediately note that this wave function is not antisymmetric. We can perform 
the same trick as before to make an antisymmetric wave function out of this: 

1 
=) p [ 

1s

(r
1

) 
2s

(r
2

)↵(a
1

)↵(a
2

) 
1s

(r
2

) 
2s

(r
1

)↵(a
2

)↵(a
1

)]
2 
1 

=) p [ 
1s

(r
1

) 
2s

(r
2

) 
1s

(r
2

) 
2s

(r
1

)] ↵(a
2

)↵(a
1

)
2 

spin
| {z } 

| {z }
space 

Applying the same principle to the 1s " 2s # configuration gives us a bit of trouble: 

1 
=) p [ 

1s

(r
1

) 
2s

(r
2

)↵(a
1

)↵(a
2

) 
1s

(r
2

) 
2s

(r
1

)↵(a
2

) (a
1

)] 6= 
space spin

2 

Hence, the pure "# configuration can’t be separated in terms of a space part and a spin part. 
We find a similar result for 1s # 2s ": 

1 
=) p [ 

1s

(r
1

) 
2s

(r
2

) (a
1

)↵(a
2

) 
1s

(r
2

) 
2s

(r
1

) (a
2

)↵(a
1

)] 6= 
space spin

2 

Since we know the wave function should separate, we have a problem. The solution comes in 
realizing that for an open shell configuration like this one, the 1s " 2s # and 1s # 2s " states 
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are degenerate eigenstates and so we can make any linear combinations of them we like and 
we’ll still obtain an eigenstate. If we make the “+” and “ ” combinations of 1s " 2s # and 
1s # 2s " we obtain: 

1 
=) p [ 

1s

(1) 
2s

(2)↵(1) (2) 
1s

(2) 
2s

(1)↵(2) (1)]
2 
1 ± p [ 

1s

(1) 
2s

(2) (1)↵(2) 
1s

(2) 
2s

(1) (2)↵(1)]
2 

four additive terms 

1 1 
=) p

2 
[ 

1s

(1) 
2s

(2) ⌥ 
1s

(2) 
2s

(1)] p
2 
[↵(1) (2) ± ↵(2) (1)] 

| {z } | {z }
space spin 

also four additive terms, which separates nicely. Performing similar manipulations for the 
"" configuration and taking care to make sure that all of our spatial and spin wavefunctions 
are individually normalized allows us to complete the table we set out for the 1s2s excited 
states: 

space

(r
1

, r
2

) ⇥ 
spin

(a
1

, a
2

) 

62s 

2 
1p=) [ 

1s

(r
1

) 
2s

(r
2

) 
1s

(r
2

) 
2s

(r
1

)] ⇥ ↵(a
1

)↵(a
2

)1 
6 

1s 

62s .......
.........
....
....
.........
...
..
.........
......
.... 

.........

.........

........

...

.........

.........

.....

... 

...........
.
.......... 

........... .. 
.............. ..... 

..... 

2 
1p
2 
[ 

1s

(r
1

) 
2s

(r
2

) +  
1s

(r
2

) 
2s

(r
1

)] ⇥ 1p
2 
[↵(a

1

) (a
2

) (a
1

)↵(a
2

)]1s ? 

............ .......... .... 
........... 
..........
..
.. 

............ 

.........

.........

..

... 

.......
.........
....
...
.........
......
... 

.........
......
.. 
.........
........
.. 

..................... 
and 

2s 
? 

1p
2 
[ 

1s

(r
1

) 
2s

(r
2

) 
1s

(r
2

) 
2s

(r
1

)] ⇥ 1p
23 [↵(a

1

) (a
2

) +  (a
1

)↵(a
2

)].........
........
.... 
.........
.........
.
..
.........
.........
.. 
.........
.......
.. 
..........
.....
.. 

...........
...

.. 
.............
.

................... 

6 
1s 

4 
2s 

? 
1p
2 

=) [ 
1s

(r
1

) 
2s

(r
2

) 
1s

(r
2

) 
2s

(r
1

)] ⇥ (a
1

) (a
2

) 

1s ? 

We notice several things about these wave functions: 

• While the overall wave function is always antisymmetric by construction, the spatial 
part can be either antisymmetric (cases 1, 3 and 4) or symmetric (case 2). This e↵ect 
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is compensated for in the spin part, which can also be antisymmetric (case 2) or 
symmetric (cases 1,3 and 4). The resulting wave function always has a symmetric part 
times an antisymmetric part, resulting in an antisymmetric wave function. 

• The spin part of Case 2 is exactly the same as the spin part of the ground state of the 
helium atom. Thus, just as we thought of the electrons in the ground state as being 
“paired“, we say the electrons in Case 2 are paired. 

• The spatial parts of three of the states above (cases 1,3 and 4) are the same. Case 2 has 
a di↵erent spatial part. Because the Hamiltonian only depends on spatial variables and 
not spin, we immediately conclude that states 1,3 and 4 will be degenerate — even when 
we take into account the electron-electron interaction. State 2, however, will generally 
have a di↵erent energy once we account for interactions. In common spectroscopic 
parlance the three degenerate states are called a triplet and the unique state is called 
a singlet. Further,  because  these  states  arise  from  degenerate  spin  states,  they  are  
called singlet and triplet spin states 

Energies of Singlet and Triplet States 

As we showed above, we expect the singlet and triplet states to have di↵erent energies once 
electron repulsion is taken into account. Which one will be lower? To decide this, we note 
that the triplet spatial wavefunction is zero when the two electrons are at the same position: 

1 
r
1 = r

2 =) 
T = p [ 

1s

(r
1

) 
2s

(r
1

) 
1s

(r
1

) 
2s

(r
1

)] = 0 
2 

whereas the singlet wavefunction is non-zero: 

p1 
=

S p
1s 2s 1s 2s

(r
1

) = 0.r
1 = r

2 ) = [ (r
1

) (r
1

) +  (r
1

) (r
1

)] = 2 
1s 2s

(r
1

) 6
2 

Because the electrons repel each other more when they are close to one another, we therefore 
expect the singlet to have more electron-electron repulsion and a higher energy. This rule 
turns out to hold quite generally and is called Hund’s first rule: for degenerate non-
interacting states, the configuration with highest spin multiplicity lies lowest in 
energy. Hund actually has three rules (of which this is the first) concerning the ordering of 
degenerate noninteracting states. The others will not be discussed here, but see McQuarrie 
Section 9.11-9.12 for more on this topic. 

So we expect the triplet to be lower. How much lower? To answer this question, we have 
to compute the average energies of the singlet and triplet wavefunctions. Recall that the spin 

http:9.11-9.12
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part never matters for the energy : 
Z Z Z Z

⇤ ⇤ ⇤ ⇤⇤Hb drda = H @ H dr
space space 

b
space spin drda = 

spin spin da 
space 

b
space@@RZ 

⇤ 1 
= 

space H
b

space dr 

The influence of the spin wave function is only indirect: if the spin part is antisymmetric 
(e.g. singlet) then the spatial part must be symmetric and vice versa. To  simplify  our  algebra,  
it is convenient to create the obvious shorthand notation: 

1 1 p
2 
[ 

1s

(r
1

) 
2s

(r
2

) 
1s

(r
2

) 
2s

(r
1

)] ⌘ p (1s2s 2s1s)= 
T 

2
1 1 p
2 
[ 

1s

(r
1

) 
2s

(r
2

) +  
1s

(r
2

) 
2s

(r
1

)] ⌘ p (1s2s + 2s1s)= 
S 

2

where we just need to remember that the first function in a product will be the one that has 
electron “1” while the second will have electron “2”. Proceeding then: 

normalization ?ZZ  
⇤ 1 

ZZ  
h
1 + ˆE

S/T = H 
S/T dr1

dr
2 = (1s2s ± 2s1s)⇤(ˆ h

2 + Vb
12

)(1s2s ± 2s1s)dr
1

dr
2

S/T 
b

2 
21 

ZZ  ✓ 
e

◆ 

= (1s2s ± 2s1s)⇤ E
1s + E

2s + (1s2s ± 2s1s)dr
1

dr
2

2 4⇡"
0

|r
1 r

2

|
2e

ZZ  
1 

= E
1s + E

2s + (1s2s ± 2s1s)⇤ (1s2s ± 2s1s)dr
1

dr
2

. 
8⇡"

0 |r
1 r

2

|

) 

On the second line, we have used the fact that both 
S and 

T are eigenstates of the 
independent particle Hamiltonian (that is, h

1 and h
2 are hydrogenic Hamiltonians and 1s and 

2s are hydrogenic orbitals). On the third line, we have taken the independent particle energy 
outside the integral because 

S and 
T are normalized. Thus, we see that the average energy 

takes on the familiar form of (non-interacting energy)+(interactions). The interaction term 
can be simplified further: 

2e
ZZ  

1 
(1s2s ± 2sls)⇤ (1s2s ± 2sls)dr

1

dr
2 (4 terms) 

8⇡"
0 |r

1 r
2

|
2e

ZZ  
1 1 1⇤ ⇤ ⇤ = ⇤2s 1s2s ± 1s ⇤2s ⇤1s[1s 2s1s ± 2s 1s2s (4 terms) 

8⇡"
0 |r

1 r
2

| |r
1 r

2

| |r
1 r

2

|
1 

+2s ⇤1s ⇤ 2s1s]dr
1

dr
2

. |r
1 r

2

| 

http:versa.To
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We note that the first and last terms are the same if we just interchange the dummy inte-
gration variables (and recall that all the orbitals are real, so that we can drop the complex 
conjugation): 

2e
ZZ  

1 
1s ⇤(1)2s ⇤(2) 1s(1)2s(2)dr

1

dr
2

4⇡"
0 |r

1 r
2

|
2 11 $ 2 e

ZZ  
! 1s ⇤(2)2s ⇤(1) 1s(2)2s(1)dr

2

dr
1

4⇡"
0 |r

1 r
2

|
2e

ZZ  
= 2s ⇤(1)1s ⇤(2) 

1 
2s(1)1s(2)dr

1

dr
2

. 
4⇡"

0 |r
1 r

2

| 

Note the tie lines: e (1) is in 2s and e (2) is in 1s. Meanwhile the second and third terms 
are also the same: 

e
ZZ

2 

1s ⇤(1)2s ⇤(2) 
1 

1s(2)2s(1)dr
1

dr
2

4⇡"
0 |r

1 r
2

|
2

1 $ 2 e
ZZ  

1 ! 1s ⇤(2)2s ⇤(1) 1s(1)2s(2)dr
2

dr
1

4⇡"
0 |r

1 r
2

|
2e

ZZ  
1 

= 2s ⇤(1)1s ⇤(2) 1s(1)2s(2)dr
1

dr
2

. 
4⇡"

0 |r
1 r

2

| 

Note the di↵erent arrangement of the tie lines: e (1) is in 1s on left and 2s on the right. 
These integrals are called Coulomb (J) and exchange (K) integrals, respectively. Both are 
positive numbers (because they arise from electron repulsion). The Coulomb integral is so 
named because we can re-write it as 

2e
ZZ  |1s(1)|2 |2s(2)|2 

J = dr
1

dr
2

. 
4⇡"

0 |r
1 r

2

| 

The first factor in the numerator is the probability of finding a 1s electron at a point r
1

, 
while the second is the probability of finding a 2s electron at a point r

2

. Since  the  electron  
is charged, each of these probabilities reflects the appropriate charge density at the points 
r
1 and r

2

, and  J reflects the classical electrostatic repulsion between these two densities. 
Thus, J accounts for the classical repulsion between the 1s and 2s electrons (according to 
Coulomb’s law). 

Meanwhile, K is completely quantum mechanical in nature. This exchange interaction 
results from the fact that the electrons are indistinguishable and the wavefunction is an-
tisymmetric. Notice that, if we had not antisymmetrized our wavefunctions, the spatial 
part would have just been a direct product 1s2s instead of the symmetric/antisymmetric 
1s2s ± 2s1s combinations we obtained for the singlet and triplet. In the former case, the 
electrons are being treated as distinguishable (e.g. electron “1” is always 1s while electron 
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“2” is always 2s) and the exchange term disappears from the energy: 

1 
2 

ZZ  
(1s2s± 2s1s)⇤ 

|r
1 

1 
(1s2s± 2s1s)dr

1

dr
2 

r
2

|
ZZ  

1distinguishable ⇤! 1s ⇤2s 1s 2s dr
1

dr
2

. |r
1 r

2

| 
Clearly exchange — which arises from the cross terms on the LHS — is absent on the RHS. 
Thus, the K integrals only arise when we have terms in the wavefunction where two electrons 
have exchanged places. Hence the name “exchange.” It is important to note that, next to 
the Pauli exclusion principle, this is the largest impact that antisymmetry has on chemistry. 
It can be rigorously proved that J > K  always (i.e. no matter what functional form the 1s 
and 2s wavefunctions have). 

Thus, in terms of J and K the energies of the singlet and triplet states become: 

E
S/T = E

1s + E
2s + J

1s2s ± K
1s2s

. 

Thus we see that, as expected, the singlet state is higher in energy than the triplet. In fact, we 
can even give a numerical estimate for the splitting by evaluating K

12

. Plugging  in  the  forms  
of the 1s and 2s orbitals of helium and doing the integrals, we obtain K

12 = 32/729 = 1.2 
eV and a splitting of 2K

12 = 2.4 eV. The latter is quite a bit larger than the experimental 
singlet-triplet splitting in helium, which comes out to only 0.8 eV. Once again, we see the 
independent particle model gives us a qualitatively correct picture (i.e. the sign of the splitting 
is correct and of the right order of magnitude) but we fail to obtain quantitative results. We 
therefore arrive at the following qualitative picture of the 1s2s excited state of Helium: 

singlet 1E = E0 + J + K
6 

E
0 + J 

2K
6 @ 

@@ ? 
triplet 1E = E0 + J K

J 

E
0 ?� 

In other chemistry courses you may have been taught that there are only two spin states 
for a pair of electrons: "# and "". The  former  represented  the  singlet  state  and  the  latter  the  
triplet state. You were told to think of the singlet electrons as being “paired” and the triplets 
as being “unpaired.” However, how do these strange spin states we’ve derived connect with 
the “paired” and “unpaired” ideas? To answer this question, first of all we should note that 
neither of the antiparallel states we’ve derived is strictly "#. Instead,  they  look  like  "# ± #", 
with "# #" being the singlet and "# + #" being part of the triplet. The idea that the 
singlet state is #" is a white lie that you were told in order to simplify the arguments: as 
long as the subtle di↵erence between #" and "# #" isn’t important, we can get away with 
explaining much (though not all) chemistry by treating the singlet state as "#. 
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In the more precise picture we’ve derived here, the spin part of the wavefunction 
determines whether the electrons are paired or not. An electron pair has the charac-
teristic spin part ↵� �↵. That  is  to  say,  paired  electrons  form  a  singlet.  Spin  parts  that  look  
like ↵↵, ↵� + �↵, or  are unpaired triplet configurations. As we have seen above, pairing 
two electrons raises the energy through the exchange integral. In  some  situations,  
this is called the “pairing energy.” The counterintuitive thing that we have to re-learn is that 
↵� + �↵ does not describe an electron pair. In every way it behaves like ↵↵ or : the  energies  
are the same and (as you may show on the homework) the eigenvalues of Sb2 are the same. 

total 

This idea really does not fit into the simple qualitative picture of triplet states being "", 
but it is nonetheless true. The fact that 
there are three components of the triplet 
state is not a coincidence. As you will show, 
the eigenvalues of Sb2 for the triplet states 

total 

are all 2}2, which  is  consistent  with  a  to-
tal spin of S = 1,  because  the  eigenvalues  
of Sb2 would then be }2S(S + 1)  =  2}2 .

total 

This picture is also consistent with the idea 
that, if we add two spins with s = 1

2 parallel 
to one another, we should get a total S of 
S = 1

2 + 1
2 = 1. Given this picture, we note 

that the three triplet states would then cor-
respond to the three possible z-projections 
of spin. That is to say the three triplet 
states should have M

S = +1, 0 and  1, respectively. This gives us at least some qualitative 
picture of what the ↵� + �↵ state means and why it corresponds to unpaired electrons. In 
the ↵� + �↵ state the spins are oriented parallel to each other, but they are both oriented 
perpendicular to the z–axis, so that on average you will always find one spin-up and one 
spin-down along z. This  is  a  very  simple  example  of  the  addition  of  angular  momentum,  a  
topic which is covered in much greater depth in McQuarrie. 

Consider also the use of S to obtain all of the M
S eigenstates of a two-electron state. 

S± |SMS i = }[S(S + 1)  M
S (MS ± 1)]1/2 |SM

S ± 1i 
S |1 1i = }[2 0]1/2 |1 0i 
S |1 0i = }[2 0]1/2 |1 1i 

S |1 1i = 0  

S |0 0i = 0  

M
S = +1  

M
S = 0  

M
S = 1 

z 

y 

x 

http:integral.In
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