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Lecture 23 Supplement: Slater De-
terminantal Matrix Elements 

Slater Determinantal Matrix Elements of Zero–, One–, 
and Two–Electron Operators 

An N × N determinant expands into N ! additive terms. A matrix element in a Slater 

determinantal basis set consists of the sum of (N !)2 additive terms. If anti–symmetrization 

were not required for an N–fermion system, a matrix element would consist of a single term. 

It turns out that the situation for matrix elements of determinantal basis states is only 

slightly more complicated than the single term expected for a non–anti-symmetrized basis 

state. The following notes explain this surprising reduction in the labor associated with 

evaluation of determinantal matrix elements. 

It is necessary to consider three types of matrix elements, which involve zero-, one-, 

and two-electron operators. A zero-electron operator is a constant, usually just an overlap 

integral. A one-electron operator could involve an angular momentum z-component operator 

NX
ŝz,i 

i=1 

a spin-orbit operator 

N N � �X X 1 
a(ri)` i · si = a(ri) ` z,isz,i + (` +,i, s−,i + ` −,is+,i)

2
i=1 i=1 

or a transition moment operator X 
e ~ri. 

i 

A two-electron operator could be the inter-electron repulsion operator 

NX e2 

.
riji>i=1

Let’s deal with each of these operators in sequence. 
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(1) Zero–electron operators 

The selection rule for non-zero matrix elements of such operators is Δso = 0, where so is 

an abbreviation for spin-orbital, e.g. 1sα. It is convenient to label the spin-orbitals in some 

agreed-upon standard order (1, 2, 3, . . . ,M) [where M � N because there are more possibly-

relevant spin-orbitals (M) than the number needed for a particular N–electron state (N)]. 

The N–electron matrix element of operator ĉ (a constant) is Z X 
c hψN |ψN i = 1(n1)2(n2) . . . N(nN ) 

{ni} ⎡ ⎤? ⎡ ⎤ Z X X ⎣ ⎦ ⎣ 0 0 0 c hψN |ψN i = c 1(n1)2(n2) . . . N(nN ) 1(n1)2(n2) . . . N(nN )⎦ dτ1 . . . dτN 
0{ni} {n }i

where {ni} refers to one of N ! combinations of N electrons and the sum is over all N ! of 

these. There are N ! additive terms in [· · · ]? and N ! additive terms in [· · · ]. But the only 

non–zero terms after integration are those for which the ordered set {ni} is identical to 
the ordered set {n0 i}. Each of these non-zero terms is a normalization integral, so we get 

(1)N = 1. So, for each of the N ! additive terms in [· · · ]? there is a perfect match with only 

one of the additive terms in [· · · ]. Thus, since 

|ψN i = [N !]−1/2|1, 2, · · · N |, 

the result is that 

c hψN |ψN i = c[N !]−1/2[N !]−1/2[N !] 

= c. 

This is exactly what one would expect for a zero-electron operator matrix element between 

non–anti–symmeterized basis states. Note that all Δso 6= 0 matrix elements are obviously 

zero by orthogonality of at least one pair of one-electron spin-orbitals. 

(2) One-electron Operators 

The selection rule for non-zero matrix elements of a one-electron operator is Δso = 0 or 1. 

These two possibilities are discussed separately. 
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(2A) Δso = 0 

For example, b SzOp(1) = ˆ
P 

= i ŝz,i . * 

ψN 

����� X 
ŝz,i 

����� ψ 
Z+ YX � 

hni|ˆ nj |n 0 sz,i|nii dτ1 . . . dτN .= j 
0i {ni},{n } j 6=i
i

The only non–zero matrix elements are for {ni} = {n0 }. For each {ni} term there is only i

one term from the sum over {n0} and there are N ! additive terms from the sum over {ni}, 
each one being hni|ŝz,i|nii · 1 · 1 · 1 · · · 1. The sum over {ni} gives } 

PN ms,i. So we have i=1 ED N

ψN |Ŝz|ψN = } ms,i = }Ms 

i=1 

X 

which is exactly what one would expect for a non-anti-symmeterized ψN . 

(2B) Δso = 1, for example 

XN
Ŝ+ = ŝ+,i. 

i=1 

Here we need a notational trick. Let us label the spin-orbitals in common between ψN and 

ψ0 as 1 . . . N , but label the unique pair of one-electron spin-orbitals as a and b,N 

ΨN = (N !)
−1/2|12 · · · a · · · N | 

Ψ0 = (N !)−1/2|1 · · · b · · · 2 · · · N |N 

where the spin-orbitals are organized in some agreed-upon standard order. The first task is 

to rearrange ψ0 so that the b spin–orbital appears in the same position as the a spin-orbitalN 

of ψN . This requires a total of p permutations of pairs of spin-orbitals, for example 

ΨN = (4!)−1/2|1a34| 

Ψ0 = (4!)−1/2|134b|.N 

The sequence of two permutations [134b| → |13b4| → |1b34|] is needed to put b in the second 

position of ΨN to match the position of a in ΨN , hence p = 2 and |1b34| = (−1)2|134b|. 

So now we know that the one–electron operator is pinned to the position that connects 

the a and b spin-orbitals. Any other position would result in orthogonality ha|bi = 0, or 
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hN |bi hN 0|ai = 0. So now we have (N − 1)! arrangements of the matching orbitals and N 

terms with one of the N electrons in the ha(i)|s+,i|b(i)i location. The result is that ED 
ψN |Ŝ+|ψ0 = (−1)p ha|ŝ+|biN 

where |ai = |aαi and |bi = |aβi, and the overall matrix element (for this example) is 

ψN |Ŝ+|ψ0 = (−1)p}[S(S + 1) − MS (MS + 1)]1/2δM+1,M 0 .N 

(3) Two–Electron Operators 

The selection rule for non-zero matrix elements of a two-electron operator is Δso = 0, 1 or 

2. These three possibilities are discussed separately. 

2 
(3A) Δso = 2 for e

rij 

The two unique so’s in ψN are a and b and those in ψ0 are c and d. The only non-zero 

E 

N 

matrix elements are of the form 

D 

����ab12 ���� ���� cd12 ���� 1 · · · N − 2 · · · N − 2 
r12����1 ���� N − 2 

���� N − 2 

����ab12 · · · dc12 · · · . 
r12 

We must apply a series of pairwise so permutations to the order of so’s in ψ0 so that cd areN 

at the same location as ab in ψN , and all of the in-common so’s are in standard order, thus 

we get a (−1)p+p0 permutation factor (from the antisymmetric nature of the ψ N -electron 

basis states). There are (N −2)! ways of arranging the N −2 ψN ↔ ψ0 matched spin-orbitals N 

in ψN , each of which picks out only one of the (N − 2)! additive terms in ψ0 Thus we get N . 

a factor of (N − 2)! from the matching spin orbitals. We also get a factor of N(N − 1) from 

the number of ways we can assign N electrons to the a and b so’s. So the overall matrix 

element is multiplied by the factor 

(N !)−1/2(N !)−1/2N(N − 1)(N − 2)! = 1, 

and the Δso = 2 matrix element is 

(−1)p+p0 
�� 

ab 

���� ���� cd 

�� 

− ab 

���� ���� �� 

dc , 
1 1 
r12 r12 
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where the minus sign between the two terms comes from the difference by 1 in the number of 

pair permutations to put ψ0 into the |cdi vs. |dci form. Note that if ms,a 6N +ms,b = ms,c +ms,d, 

both matrix elements are zero because [1/rij , Ŝz] = 0 and MS for ab would be different from 

that for cd. If ab are aαbα and cd are cαdα, both integrals are non-zero but not equal to each 

other because the spatial part of the integrands, a(1)c(1) 1 

= 0 but 
Dr12E 

1 6
������D a(1)d(1) 1 

r12 
b(2)c(2).6=b(2)d(2) 

1ab 
������ E 

If ab are aαbβ and cd are cαdβ, then ab cd dc = 0 because of α, β 
r12 r12 

orthogonality. 

This Δso = 2 case is relevant to the 1sα2sβ ± 1sβ2sα example where we need two Slater 

determinants to describe the two MS = 0 states that give rise to S = 1, MS = 0 (triplet) 

and S = 0 (singlet) states. For example, 

ab ≡ 1sα2sβ, cd = 1sβ2sα 

then ���� ����� � 

cd = 0 (mismatched α, β) 
1 

ab 
r12 

1 
���� ����� � 

6= 0 (matched α, β)ab dc = J1s2s 
r12 

ψS=0 = 2
−1/2[|ab| − |cd|] 

� 
ψS=1 = 2

−1/2[|ab| + |cd|] 

1 
ψS=0 

���� ���� ���� ���� |cd| � � � �� 
1 1 

ψS=0 = 
2 

Jab − Kab + Jcd − Kcd − 2 |ab|
r12 r12 

Jab = Jcd = J1s2s 

Kab = Kcd = 0 (because hα|βi = 0) 

|ab| = 2−1/2[a(1)b(2) − a(2)b(1)] 

|cd| = 2−1/2[c(1)d(2) − c(2)d(1)] 

�����ab ���� ���� cd 

����� �Z
1 1 11 

a(1)b(2) c(1)d(2) − a(1)b(2) d(1)c(2)= 
2r12 r12 r12 

1 1 
� 

−a(2)b(1) c(1)d(2) + a(2)b(1) c(2)d(1) dτ1dτ2 
r12 r12Z � � 

1 1 1 
= 
2 

0 − a(1)b(2) 
r12 

d(1)c(2) − a(2)b(1) 
r12 

c(1)d(2) + 0 dτ1dτ2 

1 
= [−K1s2s − K1s2s] = −K1s2s
2
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thus � 

ψS=0 

���� ���� � 
1 

ψS=0 = (K1s2s + K1s2s) = K1s2s
2

1 
r12 

and � 

ψS=1 

���� ����ψS=1 

� 
1 1 

= − (K1s2s + K1s2s) = −K1s2s
2r12 

(3B) Δso = 1 

The unique so in ψN is a and the unique so in ψ0 is b. The common so’s are 1, 2, . . . N − 1.N 

The non-zero non-anti-symmetrized matrix elements have the form ED 
a(1)1(2)| Ôp|b(1)1(2) 

and ED 
a(1)1(2)| ˆ .Op|1(1)b(2) 

Eand ψ0 NDThe number of binary permutations to put the ψN 

differs by 1 for the two above contributions to the ψN | ˆ Slater determinantal matrix Op|ψ0 N 

element, thus these two non-anti-symmetrized terms contribute with opposite signs. 

There are (N − 2)! ways of arranging the N − 2 matching so’s in ψN and ψ0 N , N − 1 

so’s into the required order 

EDchoices of the matching so that is paired with the unique a or b so in the overall matrix 

element, and N choices of which electron goes into the a so. Thus the Op|ψ0 matrixψN | ˆ N 

element consists of a sum of N − 1 2 − e− matrix elements of the form hD DE Ei 
ai| ˆ − Op|ibOp|bi ai| ˆ

and the normalization factor for each pair of terms is 

(N !)−1(N − 2)!N =
1 

N − 1 

thus ED hD DE EiXN −1

N N − 1 
i=1 

1 
ψN | Ôp|ψ0 ai| ˆ − Op|ibOp|bi ai| ˆ= . 
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(3C) Δso = 0 (for 1/rij as an example) 

This is the most interesting case and also the one that embodies the most important difference 

from the non-anti-symmetrized case. We have non-zero matrix elements of the form 

N

i>j=1 

X �� 

ij 

���� ���� ij �� 

− ij 

���� ���� �� 

ji . 
1 1 
r12 r12 

ED 

There are (N −2)! ways to arrange the N −2 spin-orbitals in ψN that are not directly involved 

in the 1 integral, and the corresponding N − 2 spin-orbitals in hψN | must be ordered in 
r12 

the same way as those in |ψN i. There are N equivalent choices for the electron in the ith so 

and N − 1 equivalent choices for the electron in the jth so. Thus the ψN | 1 |ψN Δso = 0 PN

r12 

matrix element reduces to (Jij − Kij ) Coulomb and exchange integrals. All of the Kiji>j=1

terms are unanticipated from consideration of only the non-anti-symmetrized basis states. 

The following examples should be easily predicted. ED 
Example ψN | 1 |ψNr12 

2 21s2 J1s (K1s = 0 because hα|βi = 0) 
1sα2sα J1s2s − K1s2s (triplet: S = 1) 
1sα2sβ or 1sβ2sα J1s2sS = 1 

? 
2−1/2[|1sα2sβ| ± 1|1sβ2sα|]# J1s2s + K1s2s for S = 0 

6 
S = 0 J1s2s − K1s2s for S = 1 

21s22sα J1s + 2J1s2s − K1s2s 

1s22sα2 J1s2 + J2s2 + 4J1s2s − 2K1s2s 

(sum over all pairs of so’s) 

# the K1s2s part of this example comes from the Δso = 2 terms discussed in section 3A. 

4. Shielding 

Note that the energy of each S, MS state that belongs to the configuration {n`1, n2 ̀  2, . . . } 
is given by the sum of the Hydrogenic orbital energies plus the appropriate combination of 
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Jn`n0`0 and Kn`n0`0 terms, for example 

Z2 Z2 

1s2s 3S : − − + J1s2s − K1s2s
12 22 

Z2 Z2 

1s2s 1S : − − + J1s2s + K1s2s
12 22 

When there are more than 2 electrons present, there will be a large number of J and K 

terms. For example 

1s 22s 23sα 2S 

E(2S) = 2E1s + 2E2s + E3s + [J1s + J2s + 4J1s2s − 2K1s2s] + [2J1s3s − K1s3s + 2J2s3s − K2s3s].2 2 

Note that E3s is negative whereas [2J1s3s − K1s3s +2J2s3s − K2s3s] is positive. It is tempting 

to think of this term in [· · · ] as shielding the electron in the 3s orbital from the full +Z 

charge on the nucleus. This leads us to the concept of Zeff (r) and to the expectaiton values 
`(`+1)of Zeff (r) for different values of ` (owing to the + 
2r

centrifugal term in V eff (r))2 ` 

hn` |Zeff | n`i = Zeff,` < Z. 
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