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Lecture #32: Adiabatic↔Diabatic: Zewail 
 
We are interested in wavepacket dynamics. 
 
1. How to create a wavepacket with selected characteristics? 
2. What are the basic features of wavepacket dynamics on a simple diatomic molecule potential 

energy curve with H independent of time? 
3. What are the additional features of a wavepacket on a 3N – 6 dimensional potential energy 

surface? 
4. intramode anharmonicity 

intermode anharmonic interactions 
curve crossings, surface crossings 
stationary phase regions - where are they, what can happen as a wavepacket travels through or 

near one of them? 
5. Landau-Zener inter-surface transition probability per crossing 
6. How to probe wavepacket evolution? 
Examples:  
 Zewail: I-CN dissociation 

NaI dissociation via ionic covalent curve crossing 
“Mechanism” 

 
Diabatic vs. Adiabatic Potential Energy Curves 
 
Ab Initio Potentials are “clamped nuclei” = adiabatic 
 
exact solution of electronic Schrödinger Equation, ψ is parametrically dependent on R 
 
Non-Crossing Rule 
 
Potential curves belonging to same electronic symmetry cannot cross because there are no symmetry 
restrictions on off-diagonal matrix elements between them. 
 
If there is a will, molecules will find a way. There will be a non-zero interaction term. 
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V+(Rc) – V–(Rc) = 2H12 This is an electronic interaction (usually 1

r12
) 

 
What is missing in the adiabatic representation?  Clamped nuclei.  Nuclear kinetic energy. 
 
∇R
2  nuclear kinetic energy (and rotation) must be treated as H(1). 

 
Seems harmless but the electronic Schrödinger Equation gives 
 

 ψi(qi, Q) 
 
 
∂2

∂Q2
+
∂
∂Q

 operate on ψi(qi, Q) 

 
so if we have a weakly avoided crossing 
 

 

V+(Rc) – V–(Rc) = 2H12 
 
H12 is very small, can we ignore it?  
 

 YES!  But there is something else that we cannot 

ignore:  matrix elements of ∇R
2  between vibrational levels are 

enormous! 
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∂V±
∂Q

 is enormous.  H(1) is not small.  Big trouble.  Huge interaction between vibrational levels of the V+ 

and V– states. 
 
The actual energy levels are very different from what are generated by H(0).  Why is this bad news? 
 
The adiabatic representation is a very bad representation for the case of a weakly avoided crossing.  It 
gives useless clues about how to assign the observed vibrational levels. 
 
Strongly avoided crossing 
 

 
 
V+(Rc) – V–(Rc) = 2H12 huge.  But H12 is explicitly taken into account in the ab initio computation of 
V–(R) and V+(R) potentials.  We solve for the vibrational levels of V+(R) and V–(R) and we see close 
relationships between the vibrational levels and H(0). 
 

What about ∂ψ r;R( )
∂R

 near Rc?  Very small because electronic character is changing slowly.  

 
Diabatic Curves do cross 
 

 
 
How is this possible?  We exclude some term in Helectronic which enables the electronic wavefunctions to 
remain orthogonal.  Electronic character does not change near Rc. 
 
But there is no such explicit term that we can exclude from H(0) and treat as H(1)! 
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Quantum Chemists do not like the diabatic representation even though it is what we like as Chemists. 
Why? 
 
There are ways to construct a diabatic representation from the ab initio adiabatic representation 

 

Solid curves are adiabatic 
Dashed curves are diabatic 
 
Adiabatic gives Rc and H12 
 
Make linear approximation for diabatic potential in 
region of curve crossing.  We have an R-dependent 
2-level problem. 

 
 DIABATIC ADIABATIC 

 
H(R)=T†

V1(R) H12(Rc )
H12(Rc ) V2(R)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟T =

V+(R) 0
0 V– (R)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟    

 
We know V±(R) and H12(Rc)  This is sufficient to generate V1(R) and V2(R).  We do a least squares fit by 
varying the slope of V1 and V2 at Rc. 
 
Once we have V1 and V2 or V+ and V– we can fit the spectrum. 
 
H12 large: adiabatic representation is best. 
 
H12 small: diabatic representation is best.  
 
For polyatomic molecules we have potential surfaces, not curves. 
 
Two adiabatic surfaces can have different symmetries.  This permits them to cross at the high 
symmetry point.  But as you move away from Rsym, the 2 states interact and the surfaces repel.  They 
look like a pair of cones that are joined at the apex. 
 
“Conical Intersection” 
“Vibronic Coupling” 
 
Many things that violate chemical intuition are “explained” by vibronic coupling. 
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How is this related to Landau-Zener?  Transition Probability. 
 
P12 =1− e

−2πγ   transition probability 1 → 2 at each passage through Rc. 
 

 
γ =

V12
2

!v s1 − s2
   P12 = 0 when γ = 0, P12 = 1 when γ large 

 
γ small when v large (P12 small), v is velocity at Rc 
γ large when s1 ≈ s2, s is slope of diabatic curve at Rc. 

 

 
Look at examples from the Zewail experiments. 
  

Rc Rc

1 2

1 2
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Off-Diagonal Matrix Elements in the Diabatic and Adiabatic 
Representation 
 
In the diabatic representation, the electronic-vibration matrix elements are 
 

He1,v1;e2 ,v2
diab = χv1

d Φe1
d H el Φe2

d
r
χv2
d

R
 

 
where right subscripts specify integration over electronic (r) or nuclear (R) coordinates.  This matrix 
element simplifies to the product of two integrals 
 

χv1
d χv2

d Φe1
d H Rc( )Φe2

d  

 
or, more simply, 
 

χv1
d χv2

d
R
H1,2 Rc( ) . 

 
The vibrational overlap integral is calculated using the vibrational wavefunctions of electronic states 1 
and 2.  The electronic matrix element is evaluated at Rc because that is the stationary phase point at 
which the vibrational integral accumulates to its final value. 
 
The matrix elements in the adiabatic representation are the result of a lengthy derivation, given on pages 
168-172 of H. Lefebvre-Brion and R. W. Field (see end of Lecture 32 Supplement #2).  
 
The term that is neglected in the “clamped nuclei” calculation is 
 

 
  
TN = −

!2

2µ
∂2

∂R2
+
2
R
∂
∂R

⎡

⎣
⎢

⎤

⎦
⎥+
!2

2µR2
R2   (1) 

 
The last term is nuclear rotation and we will ignore it.  Since the electronic wavefunctions depend 
parametrically on R, we need to operate with TN on the product of the electronic wavefunction, ψei (r;R)  
and the vibrational wavefunction, χvi (R) .  After some algebra we get 
 

 

 

He1v1;e2v2 (cm
−1)= −16.8576

µ(amu)
ξv1
ad Φe1

ad ∂2

∂R2
Φe2
ad

r
(Å−2 ) ξv2

ad
R

−
33.7152
µ(amu)

ξv1
ad Φe1

ad ∂
∂R

Φe2
ad

r
Å−1( ) d

dR
ξv2

R

 (2) 

 
The r,R right subscripts specify integration over the electron (r) and nuclear coordinates (R).  
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The vibrational wavefunction 
 
 ξv

ad(R) ≡ R χv
ad(R)   (3) 

 
where ξ(R) and χ(R) are normalized as 
 
 χv(R)* R

2 χv(R) R =1  (4a) 
 ξv(R)* ξv(R)* R =1.  (4b) 
 
The diabatic curves cross and the 2 × 2 configuration interaction secular equation is 
 

 

 

Ee1
d (R)−E H12

e (R)

H12
e (R) Ee2

d (R)−E
= 0  (5) 

 
where the diabatic potential energy curves are 
 
 Ee1

d (R)=V1
d (R), Ee2

d (R)=V2
d (R),  (6) 

 
and we get the adiabatic wavefunctions from the diabatic electronic wavefunctions 
 
 Φe1

ad = cosθ(R)Φe1
d − sinθ(R)Φe2

d   (7a) 

 Φe2
ad = sinθ(R)Φe1

d − cosθ(R)Φe2
d .  (7b) 

 
Note that the mixing angle, θ, is dependent on R.  
 
At the crossing point, Rc, between the diabatic potential curves, R = Rc and θ = π/4.  The vertical energy 
difference at Rc between the adiabatic potential curves is 
 
 Ee1

ad Rc( )−Ee2
ad Rc( ) = 2H12e Rc( )   (8) 

 
and the slopes of the assumed linear diabatic potentials near R = Rc are 
 
 Ee1

d R( )−Ee2
d R( ) = a R− Rc( ).   (9) 

 

Since the diabatic electronic wavefunctions are, by definition, independent of R, ∂
∂R

 applied to equation 

(7) operates only on cos θ(R) and sin θ(R), thus 
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Φe1

ad ∂
∂R

Φe2

ad = sin2θ + cos2θ
= 1

! "########
⎛
⎝
⎜

⎞
⎠
⎟
∂θ
∂R

=
∂θ
∂R

.   (10) 

 
By expanding the determinant in Eq. (5), we obtain the R-dependence of θ near Rc 
 

 sinθ cosθ
cos2θ − sinθ 2

=
1
2
tan2θ =

H12
e Rc( )

Ee2
d −Ee1

d = −
H12
e Rc( )

a R− Rc( )
.   (11) 

 
Thus 
 

 θ(R)= 1
2
tan−1

−2H12
e Rc( )

a R− Rc( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
1
2
cot

a R− Rc( )
−2H12

e Rc( )
⎡

⎣
⎢

⎤

⎦
⎥.   (12) 

 
Since 
 

 d
dx
cot−1 x

c
⎛
⎝
⎜
⎞
⎠
⎟=

−c
c2 + x2

  (13) 

 Φe1
ad ∂
∂R

Φe2
ad =

∂θ
∂R

=
aH12

e Rc( )

4 H12
e Rc( )( )2 +a2 R− Rc( )2

.  (14a) 

For convenience, define b = H12
e Rc( ) a   

 

 Φe1
ad ∂
∂R

Φe2
ad

r
=

b
4b2 + R− Rc( )2

≡W e(R)  (14b) 

 
It is reasonable to treat H12

e  as independent of R, because the integral over R accumulates only near Rc.  
Then Eq. (14b) requires that We(R) is a Lorentzian in R with a full width at half-maximum of 
4b = 4He Rc( ) a  where a is the difference in slope between He1

d  and He2
d  near Rc. 

 
Recall that the Landau-Zener formula for the probability of jumping from the V+(R) to the V–(R) 
adiabatic curve is 
 

 

 

P+– =1− e
−2πγ

γ =
He Rc( )2

!v s1 − s2

 

where s1 − s2 =
dHe1

d

dR
−
dHe2

d

dR
! 

 
Vibrational Matrix Elements 
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Our goal is to derive the matrix elements between the vibrational levels of adiabatic potential curves 
Ee1
ad (R)  and Ee2

ad (R)  that result from ∇R
2 . 

 
If it is possible to ignore vibronic interactions of state Φ1

ad  and Φ2
ad  with other electronic states, the two 

terms in Eq. (2) reduce to  
 

 
He1v1;e2v2 (cm

−1)= −16.8576
µ(amu)

ξv1
ad dW e

dR
ξv2
ad

R
−
33.7152
µ(amu)

ξv1
ad W e(R) d

dR
ξv2
ad

R
.  

 
Since both R-integrals accumulate near Rc, 
 

W e Rc( ) = 1
4b

=
a

4H12
e

dW e

dR Rc
= 0

 

 
and the dominant term in the inter-electronic vibrational matrix elements is 
 

 

He1v1;e2v2 (cm
−1)= − 33.7152

µ(amu)
ξv1
ad a
4H12

e
d
dR

ξv2
ad

R

where
d
dR

ξv2
ad ∝ ξv2±1

ad

 

 

because 
 
d
dR

∝ a −a†( ) . 

 
Note that when H12

e  is small (weakly avoided crossing) and the difference in slope of the diabatic 
potential curves is large (also weakly avoided crossing), the vibrational matrix elements are large.  If the 
adiabatic potential curves are very different in shape, the vibrational matrix elements will not follow any 
sort of restrictive propensity rule. This means that the interaction matrix elements between the 
vibrational levels of two adiabatic potential energy curves will be large and involve many simultaneous 
interactions.  An enormously non-diagonal interaction matrix will have to be diagonalized in the 
adiabatic representation.  At the opposite extreme, if the crossing is strongly avoided, H12

e  will be large 
and the difference in slopes near Rc will be very small.  All of the off-diagonal vibrational matrix 
elements will be very small. 
 
In the diabatic representation, the opposite behavior of the off-diagonal matrix elements is expected.  
For a weakly avoided crossing, H12

el  is small, the difference in slopes is large, and the only interactions 
between vibrational levels of diabatic states 1 and 2 that need to be considered will be between pairs of 
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near-degenerate vibrational levels. For a strongly avoided crossing, H12
el  is enormous and many 

vibrational overlap integrals will be large.  
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