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Lecture #5:  Begin Quantum Mechanics: 
Free Particle and Particle in a 1D Box 

 
Last time: 

 

1-D Wave equation ∂
2u

∂x2
=
1
v2

∂2u
∂t 2

 

* u(x,t): displacements as function of x,t 
* 2nd-order: solution is sum of 2 linearly independent functions 
* general solution by separation of variables 
* boundary conditions give specific physical system 
* “normal modes” — octaves, nodes, Fourier series, “quantization” 
* The pluck:  superposition of normal modes, time-evolving wavepacket 

Problem Set #2: time evolution of plucked system 
* More complicated for separation of 2-D rectangular drum.  Two separation 
constants. 
 

 
Today:  Begin Quantum Mechanics 
 
The 1-D Schrödinger equation is very similar to the 1-D wave equation.  It is a postulate.  
Cannot be derived, but it is motivated in Chapter 3 of McQuarrie.  You can only determine 
whether it fails to reproduce experimental observations.  This is another one of the 
weirdnesses of Quantum Mechanics. 
 
We are always trying to break things (story about the Exploratorium in San Francisco). 
 
1. Operators: Tells us to do something to the function on its right. 
 
Examples: Âf = g , operator denoted by Â  (“^” hat) 

* take derivative 

 

d
dx

f (x) = ′f (x)

d
dx

af (x) + bg(x)( ) = a ′f (x) + b ′g (x)
linear operator

 

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

* integrate 

 

dx af (x) + bg(x)( ) = a d∫ xf + b d∫ xg
linear operator

 
∫  

* take square root 
 

af (x) + bg(x)( ) = af (x) + bg(x)[ ]
NOT linear operator
 

1/2  

We are interested in linear operators in Quantum Mechanics. (part of McQuarrie’s postulate 
#2) 

 
2. Eigenvalue equations 
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 Âf (x) = af (x)  
 a is an eigenvalue of the operator  A . 
 f(x) is a specific eigenfunction of  A  that “belongs” to the eigenvalue a 
 
more explicit notation Âfn (x) = an fn (x)  
 

Operator An Eigenfunction Its eigenvalue 

Â =
d
dx

 eax a 

B̂ =
d 2

dx2
 sinbx + cosbx  –b2 

Ĉ = x
d
dx

 axn  n 

 
3. Important Operators in Quantum Mechanics (part of McQuarrie’s postulate #2) 
 
For every physical quantity there is a linear operator 
 
coordinate x̂ = x  
 

momentum 
 
p̂x = −i

∂
∂x

 (at first glance, the form of this operator seems surprising. Why?) 

 

kinetic energy 
 
T = p2 2m = −

2

2m
∂2

∂x2
 

 
potential energy V̂ (x) = V (x)  
 

energy  
 
Ĥ = T̂ + V̂ = −

2

2m
∂2

∂x2
+V (x)  (the “Hamiltonian”) 

 
Note that these choices for x̂ and p̂  are dimensionally correct, but their “truthiness” is based 
on whether they give the expected results. 
 
4. There is a very important fundamental property that lies behind the uncertainty 

principle:  non-commutation of two operators. x̂p̂ ≠ p̂x̂  
 
To find out what this difference between x̂p̂  and p̂x̂  is, apply the commutator, 
x̂, p̂[ ] ≡ x̂p̂ − p̂x̂ , to an arbitrary function. 

 



5.61 Fall 2017 Lecture #5 page 3 
 

revised 9/15/17 9:30 AM 

 

x̂p̂f (x) = x(−i) df
dx

= −ix
df
dx

p̂x̂f (x) = (−i) d
dx

(xf ) = (−i) f + x
df
dx

⎡
⎣⎢

⎤
⎦⎥

x̂, p̂[ ] ≡ x̂p̂ − p̂x̂ = i a non-zero “commutator”.

 

We will eventually see that this non-commutation of x̂  and p̂  is the reason we cannot 
sharply specify both x and px. 
 
5. Wavefunctions  (McQuarrie’s postulate #1) 
 
ψ(x): state of the system – contains everything that can be known.  Strangely, ψ(x) itself can 
never be directly observed.  The central quantity of quantum mechanics is not observable. 
This should bother you! It bothers me! 
 
* ψ(x) is called a “probability amplitude”.  It is similar to the amplitude of a wave (can be 

positive or negative) 
* ψ(x) can exhibit interference 
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* probability of finding particle between x, x + dx is ψ*(x)ψ(x)dx (ψ* is the complex 
conjugate of ψ) 

6. Average value of observable Â  in state ψ?  Expectation value. (part of McQuarrie’s 
postulate #4) 

A =
ψ *∫ Âψdx

ψ *∫ ψdx
 

Note that the denominator is needed when the wavefunction is not normalized to 1. 

 
 
Ĥψ n = Enψ n   ψn is an eigenfunction of Ĥ  that belongs to the specific energy 

eigenvalue, En. (part of McQuarrie’s postulate #5) 
 
Let’s look at two of the simplest quantum mechanical problems.  They are also very 
important because they appear repeatedly. 
 
1. Free particle: V(x) = V0 (constant potential) 
 

 

Ĥ = −
2

2m
d 2

dx2 +V0

Ĥψ = Eψ ,  move V0  to RHS

−
2

2m
d 2

dx2 ψ = (E −V0 )ψ

d 2

dx2 ψ =
−2m(E −V0 )

2 ψ .

 

Look at the last equation.  Note that if E > V0, then on the RHS we need ψ multiplied by a 
negative number.  Therefore ψ must contain complex exponentials like eikx.  E > V0 is the 
physically reasonable situation. 
 
But if E < V0 (how is such a thing possible?), then on the RHS we need ψ multiplied by a 
positive number.  Then ψ must contain real exponentials. 
 

 
e+kx  diverges to ∞ as x→ +∞

e−kx  diverges to ∞ as x→−∞

⎫
⎬
⎪

⎭⎪
 unphysical [but useful for x  finite (tunneling)]  

 
So, when E > V0, we find ψ(x) by trying ψ = ae+ikx + be–ikx    (two linearly independent terms) 
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d 2ψ
dx2

= −k2 aeikx + be− ikx( )
ψ

 

−
2m(E −V0 )
2

= −k2
 

Solve for E, 

 
Ek =

k( )2
2m

+V0 . 

You show that 

 

* ψ = aeikx  is eigenfunction of p̂
* with eigenvalue �k
* and p̂ = �k.

⎧

⎨
⎪

⎩
⎪

 

No quantization of E because k can have any real value. 
 

NON-LECTURE 
 
What is the average value of momentum for ψ = aeikx + be− ikx ? 
 

 

p =
dx

−∞

∞

∫ ψ * p̂ψ

dx
−∞

∞

∫ ψ *ψ
normalization integral

=
dx

−∞

∞

∫ a*e− ikx + b*eikx( ) −i!( ) d
dx

aeikx + be− ikx( )
dx

−∞

∞

∫ a*e− ikx + b*eikx( ) aeikx + be− ikx( )

=
−i! dx

−∞

∞

∫ a*e− ikx + b*eikx( )(ik) aeikx − be− ikx( )
dx

−∞

∞

∫ a 2 + b 2 + a*be−2ikx + ab*e2ikx( )
=
!k dx a 2 − b 2 + ab*e2ikx − a*be−2ikx( )−∞

∞

∫
dx a 2 + b 2 + ab*e2ikx + a*be−2ikx( )−∞

∞

∫
.

 

 
Integrals from –∞ to +∞ over oscillatory functions like e±i2kx are always equal to zero. Why?  
Ignoring the e±ikx   terms, we get 
 

 
p = k

a 2 − b 2

a 2 + b 2  

 

 

if a = 0 p = −k
if b = 0 p = +k
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a 2

a 2 + b 2

is fraction of the observations of the system
in state ψ  which have p > 0

b 2

a 2 + b 2

is fraction of the observations of the system
in state ψ  which have p < 0

 

END OF NON-LECTURE 
Free particle:  it is possible to specify momentum sharply, but if we do that we will find that 
the particle must be delocalized over all space. 
 
For a free particle, ψ*(x)ψ(x)dx is delocalized over all space.  If we have chosen only one 
value of |k|, ψ∗ψ can be oscillatory, but it must be positive everywhere.  Oscillations occur 
when eikx is added to e–ikx. 
 

NON-LECTURE 
 

ψ = aeikx + be–ikx 
 

ψ∗ψ = |a|2 + |b|2 + 2Re[ab*e2ikx], but if a,b are real 
 

 
ψ *ψ = a2 + b2

constant
  +  2ab cos2kx

oscillatory
 

 

Note that ψ∗ψ ≥ 0 everywhere.  For x where cos 2kx has its maximum negative value,  
cos 2kx = –1, then ψ∗ψ = (a–b)2.  Thus ψ∗ψ ≥ 0 for all x because (a–b)2 ≥ 0 if a,b are real. 
 
Sometimes it is difficult to understand the quantum mechanical free particle wavefunction 
(because it is not normalized to 1 over a finite region of space).  The particle in a box is the 
problem that we can most easily understand completely. This is where we begin to become 
comfortable with some of the mysteries of Quantum Mechanics. 
 

* insight into electronic absorption spectra of conjugated molecules. 
* derivation of the ideal gas law in 5.62! 
* very easy integrals 

 
Particle in a box, of length a, with infinitely high walls. 
 

“infinite box” 
 

Ĥ =
p̂2

2m
+V (x)  

The shape of the box is: 
V (x) = 0 0 ≤ x ≤ a
V (x) = ∞ x < 0, x > a

⎤

⎦
⎥ very convenient because dxψ*

–∞

∞

∫ V (x)ψ = 0. 

(convince yourself of this!)   
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ψ(x) must be continuous everywhere. 

ψ(x) = 0 everywhere outside of box otherwise ψ *
−∞

∞

∫ Vψ = ∞( ) . 

ψ(0) = ψ(a) = 0 at edges of box. 
 
Inside box, this looks like the free particle, which we have already solved. 
 

Ĥψ = Eψ  Schrödinger Equation 
 

 
−
2

2m
d 2

dx2
ψ = Eψ  (V(x) = 0 inside the box) 

 

 

d 2

dx2
ψ = − 2m

2
Eψ = −k2ψ  (k is a constant to be determined) 

 

 
k2 ≡ 2mE

2
 

 
ψ (x) = Asin kx + Bcoskx  satisfies Schrödinger Equation (it is the general solution) 
 

Apply boundary conditions: 
 

left edge: ψ(0) = B = 0  therefore B = 0 
right edge: ψ(a) = A sin ka = 0 therefore A sin ka = 0 (quantization!) 

 ka = nπ k = nπ
a

 n is an integer 

ψ = Asin nπ
a
x  

 

dx
0

a

∫ ψ *ψ = 1 normalize

A2 dx sin2
0

a

∫
nπ
a
x = A2

a
2
= 1

A =
2
a

⎛
⎝⎜

⎞
⎠⎟
1/2

 

 

ψ n =
2
a

⎛
⎝⎜

⎞
⎠⎟
1/2

sin nπ
a
x  is the complete set of eigenfunctions for a particle in a box. Now 

find the energies for each value of n. 
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Ĥψ n = −
2

2m
d 2

dx2
2
a

⎛
⎝⎜

⎞
⎠⎟
1/2

sin nπ
a
x

= +
2

2m
nπ
a

⎛
⎝⎜

⎞
⎠⎟
2

ψ n

=
h2n2

8ma2
ψ n .

 

 

En = n
2 h2

8ma2

E1
 

= n2E1 n =1, 2,3… (never  forget this!)

n = 0 means the box is empty

 

what would a negative value of n mean?    

�✓
a/3

@I
2a/3

E3 = 9E1 two nodes

� 
a/2

E2 = 4E1 one node

E1 =

h2

8ma2 zero nodes

0 ax  
n–1 nodes, nodes are equally spaced.  All lobes between nodes have the same shape.  It is 
important to remember qualitatively correct pictures for the ψn(x). 
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Summary: 
 
Some fundamental mathematical aspects of Quantum Mechanics. 
Initial solutions of two of the simplest Quantum Mechanical problems. 
 * Free Particle 
 * Particle in an infinite 1-D box 
 
Next Lecture: 
1. * more about the particle in 1-D box 
 * Zero-point energy (this is unexpected) 
 * ∆x∆p vs. n (n = 1 gives minimum uncertainty)  
 
2. particle in 3-D box 
 * separation of variables 
 * degeneracy 
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