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Lecture #6: 3-D Box and Separation of Variables

Last time:
Build up to Schrodinger Equation: some wonderful surprises

*  operators
* eigenvalue equations
* operators in quantum mechanics — especially x=x and p,_= —iha—
X
* non-commutation of X and p : related to uncertainty principle
* wavefunctions: probability amplitude, continuous! therefore no perfect
localization at a point in space
* expectation value (and normalization)

ﬁw =Ey
* Free Particle
* Particle in 1-D Box (first viewing)

Today:

1. Review of Free Particle
some simple integrals

2. Review of Particle in 1-D “Infinite” Box
boundary conditions
pictures of y,(x), Memorable Qualitative features

3. Crude uncertainties, Ax and Ap, for Particle in Box
4. 3-D Box
separation of variables
Form of Enx oo, and -
1. Review of Free particle: V(x) =V,
v, (x)= ae™™ +be™™ complex oscillatory (because E > V)
hk)’
E = u +V k is not quantized
2m
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I:‘l//|k| (x)rdx = J |:|a|2 +|b|2 +a*be ™ 1 ab *eZikx]dx

oo
—00

2 2 te what h t
—|af o +|Bf ot a*bO+abQ  [Notw whathappens o
the product e™e™")

can’t normalize | = ae” to 1.

J dx|a|2 e et = J‘N d)c|a|2
which blows up. Instead, normalize to specified # of particles between x, and x,.

—~

ikx —ikx ~ 2
Questions: Is Y, ()C) =ae™ +be™™ an eigenfunctionof P ? P ? What do your answers mean?

otk o i D 9 i ?
Is ¢™ eigenfunction of P ? What eigenvalue?

2. Review of Particle in 1-D Box of length a, with infinitely high walls

“infinite box” or “PIB”

In view of its importance in starting you out thinking about quantum mechanical particle in a
well problems, I will work through this problem again, carefully.

Vx)=0 O<x=<a
V(x) =0 x<0,x>a
Region I Region II Region 11
Classically Classically
E forbidden forbidden
because
E<V
X
S ——————— )
0 a

Consider regions I and III.
E< V()
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= 4

2m dx’
heody
LAY (-

2m dx’ I !
“———— no matter what finite
finite value we choose for
E, the Schrodinger
equation can only be
satisfied by setting
y(x) =0
throughout regions
I and III.

2 2
7 hd

So we know that ¢(x) =0 x<0,x>a.

But ¢ (x) must be continuous everywhere, thus \(0) = p(a) = 0.
These are boundary conditions.

Note, however, that for finite barrier height and width, we will eventually see that it is
possible for y(x) to be nonzero in a classically forbidden [E < V(x)] region.
“Tunneling.” (There will be a problem on Problem Set #3 about this.)

So we solve for ¢(x) in Region II, which looks exactly like the free particle because V(x) =0
in Region II. Free particle solution are written in sin, cos form rather than ¢*** form, because
application of boundary conditions is simpler. [This is an example of finding a general
principle and then trying to find a way to violate it.]

Y (x)= Asinkx + Bcoskx
Apply boundary conditions
v(0)=0=0+B—B=0

v(a)=0= Asinka = ka = nr, k="

- u 2 1/2
Normalize: 1= J. dxy *y = A? J.o dxsin? nnx —> A= (—j (Picture of normalization
e a a

integrand suggests that the value of the normalization integral = a/2)

Non-Lecture
Normalization integral for particle-in-a-box eigenfunctions
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v (x)= Asin(ﬂx)
a

Normalization (one particle in the box) requires f dxy *y=1.

For V(x) =0, 0 < x < a infinite wall box:
0 a oo a
lzj dxl//*l//+j dxt//*t//+j dxl//*l//=0+|A|2J dxsin? ™ x +0
—oo 0 a 0 a

1=|Af [ dusin® = x
0 a

Definite integral
jo” dysin®y=1/2

niw

change variable: y= 736

dy = ﬂa,’x:>dx: idy
a nmw

limits of integration:

x=0=y=0
X=a=y=nn

a . 2717[ nw a ) a T a
desm —x:J. — ldysin" y=—n| — |=—
0 a 0 \ nw niw \ 2 2
172
1=|A<, thusAz(zj
2 a

v (x)= (3) sin(ﬂxj
a a

(A very good equation to remember!)

End of Non-Lecture
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Find E,. These are all of the allowed energy levels.

Hy,=Ey,
nd’

Ll =Ev,

2 2 2.2 2
+;—(k,,)2=E O ﬂ:;12( h j

- 2~ 2
me_ " Am° 2m a
nn | I— |

2 E,

n=1,2,...
n = 0 would correspond to empty box

Energy levels are integer multiples of a common factor, E, = E,;n*>. (This will turn out to be

of special significance when we look at solutions of the time-dependent Schrodinger
equation (Lecture #13).

These are “stationary states”. You are not
allowed to ask, if the system is in ., how
5 does the particle get from one side of a
\/ °  node to the other.

How would you sample y.? What would
you measure? [Quantum Mechanics is full
of what/how is “in principle” measurable,
hence knowable.]

Could you measure ;?

E,
Could you measure [,

29

0 .
¢ zero point £

All bound systems have their lowest energy level at an energy greater than the energy of the
bottom of the well: “zero-point energy”

This zero-point energy is a manifestation of the uncertainty principle. Why? What is the

momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What
does that require about position?
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3. Crude estimates of Ax, Ap  (we will make a more precise definition of uncertainty in
the next lecture)

Ax = a for all n (the width of the well)

Ap, =-+hk, —(~hk,) = 20|k | = 2h(ﬂ)
I a

R
= ih(ﬂ) = hn/a
2t \ a

The joint uncertainty is

h
Ax,Ap, = (a)—n = hnwhich increases linearly with n.
a

n =0 would imply Ap, = 0 and the uncertainty principle would then require Ax, = %, which is
impossible! This is an indirect reason for the existence of zero-point energy.

Since the uncertainty principle is

AxAp,.=h

it appears that the n = 1 state is a minimum uncertainty state. It will be generally true that
the lowest energy state in a well is a minimum uncertainty state.

4. Use the 3-D box to illustrate a very convenient general result: separation of
variables.

Whenever it is possible to write H in the form:
H= ﬁx + fzy + ﬁz (provided that the additive terms are mutually commuting)
~2
Doy V.(X)+etc.
2m

it is possible to obtain 1 and E in separated form (which is exceptionally convenient!):

v (x,y.2)=v, W,V (2)

E=E +E +E..

Or, more generally, when
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n

H=Y h(q)
i=1
then
Y= v, (Qi)
i=1
E=)» E

i
i=1

Consider the specific example of the 3-D box with edge lengths a, b, and c.
V(x,y,2) =0 O<x=<a,0=<y=<b,0=<z=<c,otherwise V = x,

This is a special case of V(x,y,z)=V,+V,+V..

1’ [ > 9 7 }

ox’ i dy’ +a—z2

T(bobyb)=> -

V2 “Laplacian”

2m

~ -n* o NREAES NN = .
H(x,y,z)=| ——=+V, | —==+V | —=—=*V.
PPN e N ey N e
=h, +h +h,
Schrodinger Equation
[ﬁx+l;y+I;Jl//(x,y,z)=El//(x,y,z)
try y(x,y,2) =y (Y, (W (2),

where fzi operates only on y,,

and ﬁil// ;= Ey, are the solutions of the 1-D problem.

I:\lxw(x’y’z) = l//yl//zlleWx = WszExl//x = Exl//xl//yl//z = Exl//(x’y’z)
L(does not operate on y,z)

hy=Eyyy.

hy=Ey.yy.

ﬁxl// + fzyw + fzzl// = ﬁw = (EX +E + Ez)‘//-

So we have shown that, if H is separable into additive (commuting) terms, then 1 can be

written as a product of independent factors, and E will be a sum of separate subsystem
energies. Convenient!
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So, for the a,b,c box

Y, = (2/61)]/2 sin—— | E, =n,
“ 2
[ day;, =1

, I

T
Y, = (2/ b)uz sin nz , normalized, E, =n

, I

172 . N_J .
Y, =(2/c)" sin—=—, normalized, E, =n’ .
¢ “ 8mc
2
l’l2 I’li I’ly nzz
= +—2+
n,,n ) >

8 . nJX . MY . Nz
Y, ., =|—] smn sin Nl :
e \abc a b c

Y

If each of the factors of y is normalized, it’s easy to show that

nynyn,

J dx dy dz‘l//nxnynz = 1

because each of the integrations acts on only one separable factor.

This looks like a lot of algebra, but it really is an important, convenient, and frequently
encountered simplification.

We use this separable form for ¢ and E all of the time, even when H is not exactly separable
(for example, a box with slightly rounded corners).

a separable Hamiltonian that a correction term that

we use to define a complete contains what we would like
set of “basis functions” and to leave out.

“zero-order energies.”
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This is the basis for our intuition, names of things, and approximate energy level formulas.

~0) . . . . .
H  contains small inter-sub-system coupling terms that are dealt with by perturbation

theory (Lectures #15, #16 and #19).

You should look at some properties of a particle in a box. Some of these properties are based
on simple insights, while others are based on actually evaluating the necessary integrals.

{x)
()

o,

<x2 > - <x>2 “variance”
{p.)
(p2)
pr

0.0,

FWHM

Gaussian G(x—x,,0,) [x,is “center”, o is “width”]
Lorentzian L(x-x,,0,)

Minimum Uncertainty Wavepacket
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