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Lecture #9: Harmonic Oscillator:
Creation and Annihilation Operators

Last time
Simplified Schrodinger equation: & = o’x, a0 = (ku)"* /h

07 ., 2E
-+ ——|y=0 dimensionless
reduced to Hermite differential equation by factoring out asymptotic form of y. The asymptotic
W is valid as E* — «. The exact 1, is

Hermite polynomials

lIIV('X) = NvHv(a)eiéz/z V= O’ 1’ 2’ cen @

orthonormal set of basis functions
E =ho(v+%),v=0,1,2,...
even v, even function
odd v, odd function
v = # of internal nodes
what do you expect about <f> ? <f/> ? (from classical mechanics)
pictures
*  zero-point energy
* tails in non-classical regions
* nodes more closely spaced near x = 0 where classical velocity is largest
* envelope (what is this? maxima of all oscillations)

* semiclassical: good for pictures, insight, estimates of J- v Opy , integrals without

solving Schrédinger equation
1/2
pE(x) = pclassical ('x) = I:ZJM(E - V(X))]
envelope of y(x) in classical region (classical mechanics)

2k /m?
\V(x)‘envelope = 21/2 |:

1/4
for H. O.
E-V(x)

1
Y ydx e ——,
\4
[V}
velocity

spacing of nodes (quantum mechanics): # nodes between x, and x, is

2 X2
ZJ‘ pr(x)dx (because Mx) = h/p(x) and node spacing is A/2)

2 prE)
# of levels below E: ZJ‘ o PE (x)dx “Semi-classical quantization rule”

“Action (h) integral.”
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Non-Lecture
Intensities of Vibrational fundamentals and overtones from

|
u(x) = p, T X

I dx vy x"y ., “selection rules”

m=n,n—2,...—n

~

Today some amazing results from a’,a (creation and annihilation operators)

*  dimensionless ¥, 1:9 — exploit universal aspects of problem — separate universal from
specific — a,a" annihilation/creation or “ladder” or “step-up” operators

integral- and wavefunction-free Quantum Mechanics

all E, and v, for Harmonic Oscillator using a,a’

values of integrals involving all integer powers of X and/or p

“selection rules”
integrals evaluated on sight rather than by using integral tables.

* K K ¥ ¥

1. Create dimensionless X and 1:9 operators from X and p

h 172 2.1 172 1/4
— , units = mit =/ recall E=o"*x = K x
]/{0) -1 hZ

mt
N 1/2 . 1/2 —1
p=[mo]" p, units =[] =mlt = p

=0

x

replace X and p by dimensionless operators

~2
~ 1 ., hwas, k h 2
H=L 4 i@ :ld—p2 +——X
2u 2 2u 2 mw
IW‘ ho
> 2
A~ 4 .
- 7[132 4 ;52] factor this?
AT, ~ & A A
=—/|lip+x)-ip+Xx)|?
2 [( P )( P )] does this work? No, this attempt at factorization
l l generates a term I [ f),fg] , which must be subtracted
21/2ﬁ 21/2ﬁ’r R ~n A A
out: H :h_w(Zaa—z[p’x )
2 —
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a=2"(X+ip
a'=2"(%-ip)
5_ A2, A
X=2""(a+a")
& aA-l2( ¢ A
p=i2"(a'-a)

be careful about [):(,f)] #0

We will find that
ay, ="y, annihilates one quantum

a'y, =(v+1)?vy,, creates one quantum

H=ho(aa —1/2)=ho(a’a+1/2)-

This is astonishingly convenient. It presages a form of operator algebra that proceeds without
ever looking at the form of y(x) and does not require direct evaluation of integrals of the form

A, :J dx wjfhpj.

2. Now we must go back and repair our attempt to factor H for the harmonic oscillator.
Instructive examples of operator algebra.
* What is (zf) + ):c)(—zf) +)£c) ?

20 20 AL A2

D+ X" +ipX—ixp

1
53]

Recall [ p,x]=—if . (work this out by pif —xpf =[p.x]f).

What is i[ p,% |?

i[ .3 ]=ilamo] " {ir/z [5.%]

mo
=[] (=in) = +1.
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So we were not quite successful in factoring H . We have to subtract (172)hw:

o
left
over

This form for H is going to turn out to be very useful.

* Another trick, what about [4,a"]=?

a0 ]=[2"(5+3).2 (pe D)= 5 515 (15

So we have some nice results. |H = hm{ﬁ*ﬁ + %} = hm[ﬁﬁ* — %}
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3. Now we will derive some amazing results almost without ever looking at a wavefunction.

If p, is an eigenfunction of H with energy E,, then a"y, is an eigenfunction of H belonging to

eigenvalue E, + hiw.

ﬁ(a*wv)zhw a'a+—|a'y,

=hw| a'aa +§a U8

Factor a’ out front

aa’ = [aaf]wa 1+4'a

H(a'y,)=4"ho afa+1+

H+ho
and PAIWV =E vy ,thus
ﬁ(ﬁ\pv) =a"(E, +ho)y, =(E, + h(x))(ﬁ\pv)

Therefore a ™y, is eigenfunction of H with eigenvalue E, + ho.

So every time we apply a " to y,, we get a new eigenfunction of H and a new eigenvalue
increased by 7w from the previous eigenfunction. a * creates one quantum of vibrational
excitation.

Similar result for a1,.

a1, is eigenfunction of H that belongs to eigenvalue E, — hiw. a destroys one quantum of
vibrational excitation.

We call a’,a “ladder operators” or creation and annihilation operators (or step-up, step-down).
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Now, suppose I apply a to y, many times. We know there must be a lowest energy eigenstate
for the harmonic oscillator because E, = V(0).

We have a ladder and we know there must be a lowest rung on the ladder. If we try to step
below the lowest rung we get

ﬁwmin = 0
27" [+ X)W =0

Now we bring X and p back. dx

This is a first-order, linear, ordinary differential equation.

What kind of function has a first derivative that is equal to a negative constant times the variable
times the function itself?

2

d —CX )
 — Dcxe™
dx

IO
2h

2

_Ho
— 2h
\ljmin - Nmine .

(A Gaussian)

The lowest vibrational level has eigenfunction, ,,,,(x), which is a simple Gaussian, centered at
x =0, and with tails extending into the classically forbidden E < V(x) regions.
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Now normalize:

Lecture #9

J.:o dx I“"fnin“l’minl =1=N,,

give factor of
2 in exponent

[recall asymptotic factor of Y(x): e

J: dx e

Page 7

0]
ﬂxz

h

7'51/2

(poo/h)"™

1/4
(x)=| #O
l|Im1n(x) ( T )

1o 2
e 2h

This is the lowest energy normalized wavefunction. It has zero nodes.

7¥0]

Gaussian integrals

2.2

[fdx e =T
0

oo 22
JO dx xe”' " =—

2.2

dex Xl = T
0

dex x2n+le—r2x2 _
0

JO dx x2ne—r X

- 2r2n+2

NON-LECTURE

22 :n1/21‘3‘5"'(2n—1)

n+l_ 2n+l
2"r

By inspection, using dimensional analysis, all of these integrals seem OK.

We need to clean up a few loose ends.

1.

Could there be several independent ladders built on linearly independent y ., ¥, ?

Assertion: for any 1-D potential it is possible to show that the energy eigenfunctions are
arranged so that the quantum numbers increase in step with the number of internal nodes.

particle inboxn=1,2, ...

#nodes =0, 1, ..., which translates into the general rule

#nodes=n-1

harmonic oscillator

v=0,1,2,...
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# nodes =v

We have found a ,,;, that has zero nodes. It must be the lowest energy eigenstate. Call
itv=0.

2. What is the lowest energy? We know that energy increases in steps of 7 m.
E . . —E =nho.

We get the energy of p,,;, by plugging v,;, into the Schrodinger equation.

BUT WE USE A TRICK:

Now we also know

Emin+n _Emin = nh(l)
OR
E,,, —E,=vho,thus E, =ho(v+1/2)

NON-LECTURE

3. We know
At _
a Wv - CVWV-H
ﬁlIjv = dva—l

what are ¢, and d,?
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H 1 .. H 1 ..
———=2a'a, —+—=aa
hw 2 hw 2
(fi—l)w;=(v+———)wv=ﬁ%wv
ho 2 2
aaw\/:vw\/

)

for aa’ we use the trick

A JURE Ant »
Now J- dx . aa'y, :J. dx |a'y, | because 42" is Hermitian
*

Prescription for operating to the left is y 4= (ﬁ*w ) ) = (af\pv)

2
v+1l=

CV
. 1/2
c,=|v+1]
similarly for d,in ay, =dy, ,
* XA+ A
dx y a'ay =v

in x and p.
2

2:|dv

d,=v" Again, verify phase choice

. dx|ay,

Page 9

Make phase choice and then verify by putting
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1/2

ﬁTWV - (V+1) W\H—l

AL N2

a\|lv — (V) lIjv—l

~ A TA

N=a'a R@m@mt% these fiye exceptionally
R Portant equations!

N Wv = V\llv

&>

a'l=1

o~

Now we are ready to exploit the a",a operators.

Suppose we want to look at vibrational transition intensities.
I I

X ,7\2 useﬁ,:/l\T
U(X) = py + X+ x> 2+

More generally, suppose we want to compute an integral involving some integer power of X (or
p).

N=a'a (number operator)
2 ~1/2 ( A A

¥=2""(a"+a)
p=2""i(a"~4)

revised 8/7/17 11:23 AM



5.61 Fall, 2017 Lecture #9 Page 11
X =i(::ﬁ+a)(aT +a)=i[a*2 +a° +a*a+aa*]=i[a“ +a’+2a%a+1]
2um 2um 2w
= _WTO)(&” 1A T aat)= 2 (4" +a2—2a%a—1]
etc.
H= %%; - _féTw(ﬁ"'z +a’° —25*3_1)+%w(ﬁ"'2 +a’+2a"a+1)=ho(a’a+1/2)

as expected. The terms in H involving a™ +2a° exactly cancel out.

Look at an (37)" (a)" operator and, from m — n, read off the selection rule for Av. Integral is not

zero when the selection rule is satisfied.
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