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•	 Select any two of the projects. You are advised but not required to 
choose projects relevant to your research. You are advised but not 
required to choose one from project 1–3 on reaction rate theory and 
one from project 4–6 on chemical kinetics. 

•	 If you choose to work on more than two projects, please specify which 
projects you wish to be graded on. 

•	 Complete the final exam independently without discussion with your 
classmates. You are encouraged to use references and lecture notes. 

•	 Show all your steps, in a clear and orderly way. Justify your answers 
in detail to ensure full credits. 

•	 Each project is 100 points, and the full score of the final exam is 200 
points. 

List of Projects 

1. Barrier crossing and Kramers’ turnover 

2. Multi-dimensional transition state theory 

3. Electron transfer and solvent dynamics 

4. Single molecule kinetics and photon statistics 

5. Self-consistent kinetic pathway analysis 

6. Non-linear chemical kinetics 
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1 Barrier crossing and Kramers’ turnover 

The simple transition state rate theory predicts exponential dependence on 
the activation energy and linear dependence on the vibrational frequency 
in the reactant well. However, TST is essentially is an equilibrium theory, 
and does not account for solvent dynamic effects. The Kramers theory uses 
the Fokker–Planck (FP) equation to describe the solvent effects on barrier 
crossing, and successfully predicts the dependence on the friction coefficient 
and a turnover in the reaction rate. 

1.1 

To help understand friction effects on chemical reactions, we first consider a 
dissipative harmonic oscillator described by the Markovian Langevin equa­
tion (LE): 

mẍ+ mγẋ+ mω2 x = f(t) (1) 

where (f(t)f(0)) = 2γmkB Tδ(t). Solve LE for the correlation function 
C(t) = (x(t)x(0)) and discuss the under-damped limit, γ « ω, and the 
over-damped limit, γ » ω. (You may neglect the critical damping case.) 

1.2 

Using the solution for the over-damped oscillator, show the equivalence be­
tween the Langevin equation and the 1-D Fokker–Planck (FP) equation or 
the Smoluchowski equation:   

∂P (x, t) ∂ ∂ 
= D − βF (x) P (x, t) (2)

∂t ∂x ∂x 

where F (x) is the force, F (x) = −dU(x)/dx = −mω2x. 

1.3 

We consider the 1-D potential U(x) and solve for the reaction rate using the 
flux-over-population method. For the diffusive barrier crossing, we rewrite 
the Smoluchowski equation as 

∂P (x, t) ∂J(x, t) 
= − (3)

∂t ∂x 
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where the flux is 
∂P (x, t)

J(x, t) = −D − βF (x)P (x, t) . (4)
∂x 

In the flux-over-population method, we set the flux constant, J(x, t) = Js, 
and find the steady-state population distribution, Ps(x). Following this set­
up, derive the steady-state population in the reactant well 

xB xB 

ns =

 
Ps(x)dx = 

Js 
 

dxe−βU(x)

 ∞ 

dx-e βU(x'). (5) 
−∞ D −∞ x 

1.4 

Next we approximate the 1-D potential as U(x) = 1 mω2 (x − xR)2 atUR + 
2 R

the reactant well and as U(x) = UB − 1 mω2 (x − xB)2 at the reaction barrier, 
2 B

[see Question 2.2] and assume βEa = β(UB − UR) » 1. Derive the diffusive 
limit of the reaction rate   

Js DβmωRωB ωB ωR−βEa −βEakstrong = ≈ e = e = αkT ST . (6)
ns 2π γ 2π 

Explain why the diffusive rate is always smaller than kT ST (i.e., α « 1). 

1.5 

In the weak damping limit, γ « ω, we can describe the under-damped motion 
as energy diffusion    

∂P (E, t) ∂ ∂P (E, t) 
= γω(E) I(E) P (E, t) + kBT , (7)

∂t ∂E ∂E

where I(E) is the action and ω(E) = dE/dI is the energy-dependent fre­
quency. Show the equivalence of this equation and the LE solution for the 
under-damped harmonic oscillator in Eq. (1). 

1.6 

Following the same steps as in Question 1.3, use the flux-over-population 
method to derive the steady-state population in the reactant well  UB 

 UB −βE  UB βE'
βJs e e

ns = dEPs(E) = dE dE - . (8)-γ ω(E) E I(E )UR UR 
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Hint. In this case an appropriate definition of flux is: 

∂P (E, t)
J(I, t) = −γI(E) P (E, t) + kBT (9)

∂E 

so that we have 
∂P (E, t) ∂J(I, t) 

= − . (10)
∂t ∂I 

1.7 

Next we approximate the 1-D potential as E = UR + δE in the well region 
and E = UB + δE in the barrier region and assume βEA = β(UB − UR) » 1. 
Derive the weak-damping limit of the reaction rate 

kweak = 
Js ≈ γωRIB βe

−βEA = αkT ST (11) 
ns 

and explain why the energy diffusive rate is always smaller than kT ST (i.e., 
α ≤ 1). 

1.8 

When the dynamics are not diffusive, we need to consider the full Kramers 
problem, which is equivalent to solving LE for barrier crossing. Kramers 
solved this problem in 1940 and obtained the rate 

λ 
kintermediate = kT ST = αkT ST , (12)

ωB 

where λ is the effective barrier frequency solved from the quadratic equation 

λ2 + λγ − ω2 = 0. (13)B 

Confirm α ≤ 1 and that the rate is consistent with the MDTST rate. 

1.9 

The weak and strong damping limits correspond to spatial diffusion and 
energy diffusion. Explain the different dependence on the friction coefficient 
γ in these two limits and predict a turnover in behavior as a function of γ. 
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1.10 

An easy interpolation between the two limits is 

1 1 1 
= +	 (14)
k kweak kintermediate 

Plot kweak, kstrong, kintermdiate, and the above interpolated rate. Show the 
reaction rate is always smaller than kT ST and explain the turnover condition. 

References 

•	 P. Hänggi, P. Talkner, M. Borkovec. Reaction-rate theory: fifty years 
after Kramers. Rev. Mod. Phys. 62, 251 (1990). 
doi:10.1103/RevModPhys.62.251. 

•	 A. Nitzan. Chemical dynamics in condensed phases (Oxford University 
Press, Oxford, 2006), Chapter 16. ISBN 9780198529798. 
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2 Multi-dimensional Transition State Theory 

Condensed phase chemical reactions are strongly influenced by the cou­
pling of the reaction coordinate to the solvent dynamics. This dynamics 
effect can be captured using the multi-dimensional transition state theory 
(MDTST). The starting point of MDTST is Zwanzig’s Gaussian bath Hamil­
tonian (GBH), which describes the solvent effect with deterministic multi­
dimensional equations of motion. The Pollack paper employs this explicit 
description to derive the MDTST rate and recover the Grote–Hynes rate ex­
pression, a generalization of the Kramers rate from the Markovian limit to 
non-Markovian limit. 

2.1 

In class, we derived the transition state theory from response theory, giving, 

(θ(vx)vxδ(xB − x))
kT ST = (15)

(θ(xB − x)) 

where xB is the barrier top. Explain when this rate expression is valid and 
show that the true rate is always lower than the TST rate, i.e., 

ktrue ≤ kT ST . (16) 

2.2 

The 1-D reaction potential can be expanded as U(x) = UR + 1 mω2 (x − xR)2 
2 R

near the reactant well and as U(x) = UB − 1 mω2 (x−xB )
2 around the barrier 

2 B

top. Use the above potential form to derive the standard TST rate, 

ωR −βEak = e (17)
2π 

where Ea = UB − UR is the activation energy. Explain the assumptions 
involved in deriving the above expression. 
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2.3 

Let’s generalize the above discussion to an (N+1)-dimensional system defined 
by the Hamiltonian 

N v2 

H = mi
i + U(x0, x1, · · · , xN ), (18)
2 

i=0 

where U is the multi-dimensional potential surface. We introduce the reac­
tion coordinate as y = cixi, which is the linear combination of the N + 1 
coordinates. Derive the following generalization of Eq. (15)   2 

y(θ(vy)vyδ(y − yB)) dvy dye−β(myv /2+W )θ(vy)vyδ(y − yB )
k = =   (19)2/2+W )y(θ(yB − y)) dvy dye−β(my v

where my is the effective mass of the reaction coordinate. Here, yB is the 
coordinate of the saddle point on the potential surface, and W (y) is the 
potential of mean force,     

N 
−βW (y)e = δ y − cixi . (20) 

i=0 

2.4 

We now consider a quadratic expansion of the potential surface near the 
reactant well as  1 1 

N

miω
2U(x) = UR + mω2 (x − xR0)

2 + Ri (21)
2 R 2

(x − xRi)
2 

i=1 

and around the saddle point as 
N 

U(x) = UB − 
1 
mω2 (x − xB0)

2 +
1 

miω
2 (22)

2 B 2 Bi(x − xBi)
2 

i=1 

Use Eq. (19) to derive the rate 
ωR −βFak = e (23)
2π 

Here, Fa = Ea − TSa is the activation free energy, and Sa is the activation 
entropy. 
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2.5 

To describe solvent effects explicitly, Zwanzig proposed the Gaussian bath 
Hamiltonian (GBH): 

where x is the system coordinate and qi are the bath coordinates. The har­
monic bath Hamiltonian yields dissipative dynamics described by the gener­
alized Langevin equation (GLE): 

dU 
mẍ+ m γ(t − τ)ẋ(τ)dτ + = f(t), (25)

dx

where γ(t) is the friction kernel and f(t) is the noise. Derive the relationship 
between GBH and GLE: 

2 

γ(t) = 
1 ci cos(ωit). (26)
m miωi 

2 
 

2.6 

Let’s expand the one-dimensional system potential U(x) in quadratic form, 
as in Question 2.2. Transform the N+1 coupled modes to normal modes, and 
derive the MDTST rate, 

N λR0 λRi −βEak = e (27)
2π 

i=1 
λBi 

where λBi are a set of eigen-frequencies at the saddle point and λRi are a set 
of eigen-frequencies in the reactant well. 

2.7 

Prove the following identities:     
λ2 λ2 = ω2 ωi 

2λ2 λ2 = ω2 ω2 
B0 Bi B R0 Ri R i 

i i i i 
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∫ t

0

∑

∑

i

H =
1

2
mv2x + U(x) +

N∑
i=1

mi

2
v2i + ω2

i

(
qi +

ci
miω2

i

x

)2

, (24)

[ ]

q



 

2.8 

Using the above two identifies, derive the MDTST rate as: 
ωR

k = 
λ

e −βEa = αkT ST ,	 (28)
ωB 2π 

which is known as the Grote–Hynes rate. Here λ = λB0 is the effective barrier 
frequency which satisfies 

λ2 + γ̂(λ) − ω2 = 0 (29)B 

with γ̂ the Laplace transform of the memory kernel 

iγ̂(z) = 
1 c2 z

.	 (30) 
m miωi 

2 z2 + ωi 
2 

 

Show α ≤ 1 so that the MDTST rate is always smaller than the 1-D TST 
rate. 

2.9 

For a Debye solvent, the friction kernel is given by 
γ0 −t/τDγ(t) = e	 (31)
τD 

with τD the Debye relaxation time. Plot α as functions of γ0 and τD, respec­
tively, and discuss its various limits. 
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reactions. II. Rate constants for condensed and gas phase reaction 
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3 Electron transfer and solvent dynamics 

Electron transfer underlies many chemical processes, including photochem­
istry, solar energy conversion, electrochemistry, and molecular electronic de­
vices, and plays a key role in important biological functions such as photo­
synthesis and vision. Simply put, electron transfer (ET) is a transition of 
electronic states, which changes the electronic charge distribution in a molec­
ular system and which is induced by solvent fluctuations and accompanied 
by solvent reorganization. The basic physics of electron transfer is elucidated 
by the celebrated Marcus theory, which has inspired numerous experimental 
and theoretical studies. 

3.1 

The Marcus curves represent the free energy surfaces associated with the 
1 k(x + x0)2two electronic states, i.e., U1(x) = 
2 for the donor and U2(x) = 

1 k(x − x0)2 for the acceptor. The coordinate represents the collective solvent 
2 
polarization that couples to electron transfer. The energetics is characterized 
by two parameters, the free energy bias, Δ, and the solvent reorganization 
energy, Er. Show that the activation energy is given by Ea = (Δ+ Er)

2/4Er 

and the vertical transition energy is given by Ev = Δ + Er. Explain the 
physical meanings of Er, Ea, and Ev. Why does the Marcus rate depend on 
Ea instead of Er and Ev? 

3.2 

The donor and acceptor states are coupled through the non-adiabatic cou­
pling constant J . Then, the overall Hamiltonian becomes 

U1 J H = (32)
J U2 

In the weak coupling limit, we use the golden-rule rate, 

2πJ2 

k = (δ(U1 − U2)), (33)
h2¯

where the average is carried out over the equilibrium distribution of the 
donor. Derive the Marcus ET rate expression: 

J2 −βEakET = √ 
2π 

e . (34)
h̄ 4πkB TEr 
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Plot this rate as a function of the energy bias Δ, and discuss the inverted 
regime. 

3.3 

The Marcus rate describes non-adiabatic electron transfer in the limit of weak 
electronic coupling, Jβ « 1. As J increases, the nature of electron transfer 
changes. Diagonalize the ET Hamiltonian H at a fixed coordinate, write the 
adiabatic potentials, and draw the adiabatic surfaces. Determine the critical 
value of J when the barrier on the lower adiabatic surface disappears, and 
explain the consequence. 

3.4 

One interesting application of Marcus theory is to calculate proton-coupled 
electron transfer (PCET) rate. Here, we treat the solvent degree of freedom 
classically and the proton degree quantum mechanically. Apply the Fermi’s 
golden-rule expression to derive the PCET rate 

2π|Jif |2 
−βEa,ifkP CET = √ e , (35)

h̄ 4πkB TErif 

where the subscripts i and f refer to the proton state before and after elec­
tron transfer, respectively, Ei and Ef are the corresponding eigen-energies, 
and Jif = (i|J |f) is the effective coupling constant. The activation energy 
depends on the initial and final proton states as Ea,if = (Δif + Er)

2/4Er, 
where Δif = Δ+ Ef − Ei

3.5 

The Debye model is often used to describe dielectric relaxation of the sol­
vent, which is directly coupled to electron transfer. In general, the dielectric 
response is given by 

D(t) = feE(t) + fn(t − τ)E(τ)dτ (36) 
 

where fe is the electronic part of the dielectric response function and fn is 
the nuclear part of the dielectric response function. In the Debye model, 
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the nuclear part of response is exponential: fn(t) = fne−t/τD /τD, with τD 

the Debye relaxation time. In electron transfer, the charge redistribution is 
described by a sudden change in the electric displacement: D(t) = Dθ(t). 
Derive the corresponding electric field induced by charge redistribution: 

1 1 1 E(t) = D + − Det/τL (37)
fs fe fs 

where fs = fn + fe and τL is the longitudinal relaxation time, τL = (fe/fs)τD. 

3.6 

The Marcus rate, derived from the golden-rule expression, is essentially an 
equilibrium theory, in the same spirit as TST. Non-adiabatic transitions occur 
when solvent fluctuations bring the polarization to resonance, so the overall 
rate of solvent-controlled electron transfer (SCET) is given by 

k−1 = k−1 + k−1 
D ET (38) 

where kD is the solvent relaxation rate for ET and kET is the electron transfer 
rate. Justify the above rate expression, and discuss the limits of slow and 
fast solvent relaxation. 

3.7 

To derive the SCET rate expression, we consider diffusion on the Marcus 
curve with a sink at the transition state (i.e. the curve crossing point xc), 
giving 

Ṗ (x, t) = LP (x, t) − KP (x, t) (39) 

where LP = D∂x
2P − βD∂x(FP ) is the diffusion operator defined on the 

donor surface, and K = (2πJ2/h̄)δ(x − xc) is the transfer operator defined at 
the crossing point xc. Explain this equation, and show that the SCET rate 
is given by the mean first passage time expression 

1
= P (x, t)dt = Tr 

1 
Peq (40)

k K − L 

where Peq ∝ e−βU1(x) is the equilibrium distribution of the donor state. 
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3.8 

For the special case of symmetric ET (i.e., Δ = 0), solve the SCET equation 
and derive the following expression 

 

k−1 =
1 

dt [G(xc, t) − Peq(xc)]  (41)D )Peq(xc  

where G(t) = eLtδ(x − xc). 
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4 Single molecule kinetics and photon statistics
Advanced spectroscopic techniques allow us to measure dynamics and reac-
tions one molecule at a time, thus unraveling the static and dynamic disorder
often difficult to resolve in ensemble experiments. The basic single molecule
approach is fluorescence photon detection under constant illumination. Here
we discuss the basic theoretical description for single molecule kinetics with
application to photon emission sequences. Emphasis is placed on the distri-
bution function of single molecule events, the Poisson indicator, and Mandel’s
Q parameter in photon statistics. For simplicity, we limit our discussion to
renewal processes, which have no correlation between single molecule events.

4.1

Consider a sequence of single molecule events (e.g., fluorescence photons)
detected at time t1, t2, . . . . The average moment of events in this sequence
is

N l(t) =

〈[∫ l
t

δ(τ ti)dτ

〉
, (42)

0 i

−

]
where the average i

〈
s taken

〉
over stoc

∑
hastic realizations of the same single

molecule process. Explain this expression and use it to show,〈
N2(t)

〉
− 〈N(t)〉 =

∫ t ∫ t

ρ2(τ1, τ2)dτ1dτ2, (43)
0 0

where ρ2 is the two-event density given by

ρ2(τ1, τ2) =
∑
〈δ(τ1 − ti)δ(τ2 (44)

6=j

− tj)〉 .
i

4.2

One important measurement in single∑ molecule experiments is the waiting
time distribution function, f(t) = 〈 i δ(ti−ti+1−t)〉, which is the probability
distribution function of two adjacent events. Derive the expression for the
Laplace transform of f(t),

f̂(s) =

∫ ∞ l

e−stf(t)dr =
∑ (−1)ls

l=0
l!
〈τ l〉, (45)
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where (τ l) = ∞ 

tlf(t)dt is the moment of the waiting time. Show the 
0 

relationship between the first two moments 

(τ 2) = 2(τ)2 (46) 

for a Poisson process with f(t) = ke−kt . 

4.3 

For a stationary Markovian process, the average number density becomes 
constant 

ρ1(t) = k =
1 
, (47)

(τ )
and the two-event density becomes time invariant, 

ρ2(t1, t2) = ρ2(t1 − t2). (48) 

Explain these results and prove the following relationship 

f̂(s)
ρ̂2(s) = k , (49)

1 − f̂(s) 

where functions with s variables are Laplace transforms. 

4.4 

Instead of measuring the waiting time distribution function, we can also use 
counting statistics to probe the underlying kinetics. One such a measure is 
the Poisson indicator (i.e., the randomness parameter or Fano parameter), 
given by 

(N2(t)) − (N(t))2 − (N(t))
QP (t) = . (50)

(N(t))
Show that the Poisson indicator vanishes for a Poisson process and ap­
proaches a constant at long times. 
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4.5 

The long time limit of the Poisson indicator is known as Mandel’s Q param­
eter: QM = limt→∞ QP (t). Combining the above equations, we have 

∞ ρ2(τ) − ρ2 f̂  k (τ 2) − 2(τ)2 

QM = 2 1 dτ = 2 lim − = . (51) 
0 k s→0 1 − f̂  s (τ)2 

Derive this result step by step. With this expression, we can use the waiting 
time distribution function to calculate counting statistics including Mandel’s 
Q parameter. 

4.6 

Consider a fluorescence emission process with excitation rate k1 and fluores­
cence emission rate kf . Find the waiting time distribution function, f(t), and 
the first two moments (τ) and (τ 2). Use these moments to derive Mandel’s 
Q parameter. 

4.7 

Use the expression for f(t) to obtain the photon density ρ2(t). Calculate 
the Poisson indicator and the Mandel parameter. Verify the result for QM is 
consistent with the moment calculation. 

4.8 

In addition to excitation and emission, we include the stimulated emission 
with rate k2. Repeat the above calculation of the waiting distribution func­
tion, the first two moments, and Mandel’s Q parameter. 

4.9 

Calculate the Poisson indicator, plot it as a function of time, and explain the 
time-dependence, especially at short time and long time. 
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5 Self-consistent kinetic pathway analysis 

In class, we introduced the ‘pathway summation’ as an intuitive method to 
calculate the evolution of probability in a discrete Markov chain. We will 
now generalize the method to single-molecule reaction processes and predict 
the first-passage time distribution function of enzymatic turnover reactions. 
The basic idea is to calculate the joint probability of transitions along each 
pathway leading to the product state and sum up the probabilities of all 
possible pathways. The pathway summation method is intuitive and has 
recently been applied to single molecule reactions, molecular motors, and 
photon statistics. 

5.1 

A fundamental chemical reaction follows single exponential decay, Q(t) = 
ke−kt, where Q(t) is the probability distribution function (PDF) of decay. 

= Q(t)tmdt andEvaluate the m-th moment of the first passage time (tm)
confirm 

∂m Q̂(s) 
     
 (52)
(tm) = (−1)m 

∂sm
s=0 

where Q̂(s) = ∞ 
0 e

−stQ(t)dt is the Laplace transform and s is the Laplace 
variable. 

5.2 

Consider a two-step sequential reaction, A1 → A2 → A3, with rate constants 
k12 and k23, respectively. (You may assume k12  k23.) The distribution of = 
the first passage time from A1 to A3 is 

t 

Q13(t) = Q12(t − t -)Q23(t 
-)dt - (53) 

0 

or, in Laplace space, Q̂13(s) = Q̂12(s)Q̂23(s). Write an explicit expression for 
Q13(t) and calculate the mean first passage time (t). Explain why the initial 
value of the calculated Q13(t) is zero, Q13(0) = 0. 
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5.3 

We now generalize the above argument to a chain reaction with multiple 
steps, A1 → A2 · · · → An−1 → An. The PDF of the first passage time reads 

Q1,n(s) = Q12(s)Q23(s) · · · Qn−1,n(s) (54) 

where n is the final state. Use the above expression to obtain an expression 
for the mean first passage time (t). 

5.4 

A sequence of chemical reactions can achieve remarkable timing, giving rise 
to the notion of ‘biological clock.’ To demonstrate this effect, consider a 
sequence of n reactions with identical rate constant, 

k1 = k2 = · · · = kn = nk. (55) 

Calculate the distribution Q1,n(t), mean first passage time (t), and the vari­
ance (δt2) = ((t − (t))2). Plot Q1,n(t) as a function of time for n = 1, 2, and 
10, and explain the change in Q(t) as n increases. 

5.5 

Consider decay from state 0 to state 1 with rate k01 and to state 2 with rate 
k02. We assign the transition PDF’s of the branching reaction as Q01(t) = 

−k0t −k0tk01e and Q02(t) = k02e with k0 = k01 + k02 the depletion rate from 
state 0. Explain the above result and generalize it to decay from state 0 to 
n different states. 

5.6 

The Michaelis–Menten mechanism of enzymatic reactions is given by 

[S] + [E] � (56) [ES] → [E] + [P ], 

which consists of three states: state 1, free substrate and enzyme; state 2, 
substrate–enzyme complex; and state 3, product. With the constant sub­
strate concentration [S], the stationary-state population of state 2 can be 
determined from 

d[ES] 
= k1[E] − (k2 + k−1)[ES] = 0, (57)

dt 
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where k1 = k1
0[S] is the substrate binding rate, k−1 is the dissociation rate, 

and k2 is the catalytic rate. For a single enzyme, its probability is conserved, 
giving [E] + [ES] = 1. Derive the stationary-state population 

k1
[ES] = (58)

k1 + k−1 + k2 

and the Michaelis–Menten rate 

[S]k2
kMM = k2[ES] = (59)

[S] + kM 

with the Michaelis constant kM = (k−1 + k2)/k1
0 . 

5.7 

We now apply the pathway summation technique to the Michaelis–Menten 
scheme in Eq. (56). Starting from state 1, a substrate [S] binds with the 
enzyme [E] to form a substrate–enzyme complex [ES], i.e., state 2, which 
can branch to form a product [P ] or return to the state 1. Following the 
pathway, we obtain the PDF of the turnover time by solving self-consistently 

Q(s) = Q12(s)[Q23(s) + Q(s)Q21(s)], (60) 

where the two terms in brackets represent the two decay channels from state 
2. The solution to the self-consistent equation in Eq. (60) yields 

Q12(s)Q23(s)
Q(s) = . (61)

1 − Q12(s)Q21(s) 

Expand the denominator in the above expression, draw the pathway associ­
ated with each term in the expansion, and explain the self-consistent solution 
in Eq. (61). 

5.8 

The PDF’s associated with the three reaction steps are specified by rate con­
−k1t −(k−1+k2)tstants asQ12(t) = k1e , Q21(t) = k−1e

−(k−1+k2)t, and Q23(t) = k2e , 
with k1 = k1

0[S]. Use Eq. (61) to derive the mean first passage time and con­
firm the Michaelis–Menten expression in Eq. (59), derived earlier using the 
stationary-state approach. 
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6 Nonlinear chemical kinetics 

Single molecule experiments monitor one molecule at a time and is essen­
tially linear kinetics. A chemical reaction generally involves many reactive 
components, and the concentration of each component changes with time. 
This time-dependence is described by a set of coupled non-linear rate equa­
tions, which is usually not solvable but can be analyzed for its asymptotic 
behavior. At long times, the concentration can reach a stationary solution, 
which is either constant or oscillatory. The solution can be either stable or 
unstable under external perturbations. The non-linear equations predict the 
average concentration in the thermodynamic limit, whereas the probability 
distribution of population evolution is described by master equations, which 
are generally not solvable except for special cases where the generating func­
tion method is applicable. Often, we measure the average populations and 
mean square fluctuations, which can be obtained approximately by expand­
ing master equations. 

6.1 

The stability of non-linear chemical kinetics can be determined by the Jaco­
bian matrix of its rate equations. Consider a two-component kinetics system: 

ẋ1 = k1(x1, x2)ẋ2 = k2(x1, x2) 

Write out the Jacobian matrix and solve for its eigen-values. 

6.2 

Use the above eigen-values to classify the different behaviors of the non-linear 
kinetics around the steady-state solution. 

6.3 

One of the well-studied non-linear chemical reactions is the Schlögl model: 
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Find the equilibrium concentrations ceq,X , ceq,A, and ceq,B , and establish the 
detailed balance condition 

ceq,A 
Req = . (62)

ceq,B 

6.4 

Let’s fix the concentrations cA and cB at constant values but away from the 
equilibrium values. Then the rate equation becomes 

ċX = k1cAc 
2 
X − k2c 

3 
X − k3cX + k4cB. (63) 

Given the steady-state solution css,X , find the corresponding Jacobian, and 
use the Jacobian to discuss the stability of the steady-state solution of the 
Schlögl model. 

6.5 

Consider a simple model for population dynamics. Let kg be the generation 
influx which is independent of n and kd the death rate linearly dependent 
on n. The master equation for the population distribution function P (n, t) 
reads 

Ṗ (n, t) = kg[P (n − 1, t) − P (n, t)] + kd[(n + 1)P (n + 1, t) − nP (n, t)]. (64) 

Solve for the average population (n) and the second moment (n2), and show 
the population distribution is Poisson. 

6.6 

This simple model is one of the few examples that can be solved exactly. To 
demonstrate this, we construct a generating function 

 

F (z, t) = P (n, t)z n . (65) 
n=0 

Derive the equation for F (z, t) 

∂F (z, t) ∂F (z, t) 
= kg(z − 1)F (z, t) + kd(1 − z) (66)

∂t ∂z 

and solve it with the characteristic function method. 
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6.7 

Using the generating function, find the distribution function P (n, t) and show 
the consistency with the first two moments obtained earlier. Here we assume 
the initial population is at m, i.e., P (n, 0) = δn,m. 

6.8 

Now we generalize the simple model to the birth–death problem. In addition 
to the population influx and population decay, we introduce a birth rate of 
kb. Then, the master equation for the birth–death problem reads 

Ṗ (n, t) = kg[P (n − 1, t) − P (n, t)] + kd[(n + 1)P (n + 1, t) − nP (n, t)] 

+kb[(n − 1)P (n − 1, t) − nP (n, t)] (67) 

Solve for the average population (n) and the second moment (n2), and discuss 
their behavior in different regimes. 

6.9 

If the number of molecules are large, n » 1, we can approximately take n to 
be a continuous variable, expand P (n ± 1, t) around P (n, t), and obtain the 
Fokker–Planck equation. Following this procedure, derive the Fokker–Planck 
equation for the birth–death problem: 

1	 1˙ ∂2	 ∂2P (n, t) = −kg ∂n − n P (n, t) + kd ∂n + n nP (n, t)
2	 2 

− kb ∂n − 
1 
∂n 
2 nP (n, t).	 (68)

2 

6.10 

Solve the diffusion equation for its steady-state solution and relaxation rate. 
Find the first and second moments and compare with the exact solution 
obtained earlier. 
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