5.73 Lecture #3 3-1
Lecture #3: [y(x,t)|*: Motion, Position, Spreading, Gaussian Wavepacket
Reading Chapter 1, CTDL, pages 9-39, 50-56, 60-85

Last lecture:

Infinite well
and

Delta-function well

What are the key points?
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Do E and y for delta function well behave as you expect?

TODAY: Can we construct a ¥(x,t) for which |¥ |2 acts like a CM particle, but with
correct QM characteristics?

* stationary phase point and its motion
* stationary phase approximation for evaluating an integral with

wiggly integrand

Motion requires W(x,t) from TDSE! Motion is encoded in ¥(x), but we will need to
actually observe motion (pages 3-4 thru 3-12).
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Our goal is to use a well understood function that appears frequently in
quantum mechanics, a normalized Gaussian, as a particle-like quantum
mechanical state function, a "Gaussian Wavepacket."

What we want is to know how the time-evolving center position, center
amplitude, center velocity, and the width of this wavepacket are encoded in
the mathematical expression. This will guide us in constructing particle-like
states with chosen properties and in knowing how to recognize these
properties in an unfamiliar state function.

From a stationary Gaussian G(x; x,, Ax) to a moving Gaussian
wavepacket | P(x,t) |2

You can show by evaluating the
integral that G(x; x,, Ax) 1s

Normalized: f G(x; XA x)dle normalized to 1.

L. Gloiny )= @y Hany e

<x2> = I:G(x;xO,Ax)xde and a similar equation for (x).

The width, Ax, the standard deviation of G(x), is the square root of the
variance 12

0 2
= [(e)-(4
Finally, we want a function that is normalized to 1 at ¢ =0

1= J:“P(x,O)Fdx

2

G (x;x,,A%) = ¥ (x,0) ¥(x,0) =[¥(x,0)
normalized as | [¥(x,0) dx =1

Y(x,0)= (27t)‘”4 (A x)‘”2 ef(x—xo)z/zt(m)z

This is also a Gaussian. ‘¥(x,0) is broader and not as tall as G(x;x,,Ax) atx = x,.
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2. How do we get to the following complicated-looking textbook function?

spreading and moving
with minimum width

att=0
2
2a2(x—%tJ
m
a4+4h2t2
2 \°(. a4’ ”
2 . |
W(x,0)| =| — | |1+——|e
Ta m a

time-dependent normalization and magnitude. Since probability is
conserved, the normalization factor must be t-dependent because the
denominator of the exponential factor is t-dependent.

2 172
Y(x,0 g i
¥l =| =

at t = 0, by comparison to the normalized Gaussian

(LJI/Z ~ 1 1/2
na’) | 2m(Ax)?

we have Ax(t = 0) = a/2.

Now, for motion of the center of the wavepacket, x,(¢), we expect that

Xo(t) = xO(O) + %l‘ p, is momentum at ¢ =0

v (0) _ po (O) _ hko(t) v, 1s velocity at ¢ =0, & is the
0 m m wavenumber, k=p/hatt=0

hk (1
x, (1) =x, +°—()t
m

Ax(0)=a/2. Width increases as |¢| increases from ¢ = 0.

Wavepacket is moving and changing its width. Minimum width is at ¢ = 0.

Could shift the ¢ at which minimum width occurs by replacing ¢ by ¢’ =¢+6
in the formula for ¥(x,?).
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How do we know that the width of the wavepacket is ¢-dependent? If the value of W
at the ¢t-dependent center is changing and W(x, t) is normalized, then the
wavepacket must be spreading or contracting. We will have to look at the -
dependent Schrédinger equation to see how the momentum depends on x.

NON-LECTURE
The Fourier transform of a Gaussian is another Gaussian. This means that if you
have a wavepacket, |¥(x, 0)|?, with a Gaussian shape, the momentum distribution
of this wavepacket, |®(p, 0)|?, will also be a Gaussian. This Gaussian distribution of
the momentum will cause the time-dependent spatial shape of the wavepacket to
be either stretching or compressing. If the wavepacket shape, |¥(x, t)|?, expands as
t advances, it compresses as t decreases until it reaches the minimum possible
width and then re-expands. The widths, Ax and Ap, are reciprocally related and the
minimum uncertainty wavepacket, at the t when AxAp reaches its minimum value,
1s of particular interest. It is at this instant that the quantum mechanical
wavepacket maximally resembles a classical particle.

How do we get from G(x; x,,Ax) to | ¥ (x,?) | %9

Time Dependent Schrodinger Equation (TDSE)

HY = iha—lP
ot

Time Independent Schrodinger Equation (TISE)
HY = Ey or Hy =F v,

Special very useful case: if H is independent of time and if we know the solutions to
the TISE, hen it is trivial to go from {E,, ¥} to P(x, t).

Suppose we create an arbitrary state at t = 0. It is always possible to express this
arbitrary state as a linear combination of eigenstates of H,

y(x)=2>av,

because the set of {1,,} is “complete”. We can convert this ¥ (x) to W(x, t) very
simply:

Y(x,t)= chwne_iE"t/h

revised 9/25/20 9:30 AM



5.73 Lecture #3 3-5

Show that this satisfies the TDSE:

ihaa—lf =ihy, (~iE/h)cy e "

_ 2 Ec v e—iEnt/h <—

HY = Hzcn\lfne_m"ﬂh same, so the TDSE is
p satisfied

—iE,t/h
- Z En anne e
n

It is clear that W(x,¢) “moves”, but we still need help in understanding
that motion.

(i) | ¥eo¥Pende=1
no motion because all An # 0 integrals involving

j:w:wn,dx =0 by orthogonality.

(i)  ¥'(x,0)¥(x,t) evolves in time if eigenstates that belong to
at least two different E, are included.

For example,

—iE,t/h —iE,t/h

\111,2 = Cl\ljle +CZW26
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p— 1 2
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+c .o, V,e e

o, =(E-E,)/h
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The first two terms are #-independent and the second two terms are #-
dependent and their sum is definitely a real number:

2Re (cl*cz\pfwze’mzt ) '
Now let us consider the particle in a constant potential.

eigenfunctions  {y,=e",y_ =™}

2 2712
E =P g -"K g

k 0
Hoom L 2m
arbitrary
zero of
energy
E —F
|k|h Ly

¥, (x,1)= e [Ae’k" + Be_”“]

_ Yoitkon 4 p,-ilk+on

3-6
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Stationary phase
kx o~ O = 0

wt
X =—

"k

)]
X, =——

¢ k

phase velocity

(could choose any constant instead of 0)

x4 1s the constant phase point.

A-term

B-term

— =y =t0/k

dt °

xq)(t) = xq)(O) T —

)]
k
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Some arbitrarily chosen constant phase point on W(x, t) moves at a velocity w/k.

The t-dependent term integrates to zero due to f e dx=0.

So there is no motion in [¥(x,7)|’, only a constant term and standing
waves.

But P(x,7) encodes motion through ( 5) and (£). For example:

)= ¥ 7a—x‘l’dx
h

ho —W¥(x, t)——e_’m[Alke’kx Bike ™ ]| = Zike ™[ 4™ — Be ™ ]
i ox i i

Now the whole thing:

E.\P*(x,z)aiwzhk[/l e+ B'e™ ][ 4e™ — Be ]
1 X

Now integrate f dx

J‘ 2 g = 0
(p)=nkll 4 -|B]

as expected! Motion, just like Classical Mechanics!

To get motion, it is necessary that |A| # ‘B‘
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Now for

the payoff.

Consider a superposition of ¢ for many values of k:

Y(x,0) =] gk)e™ di

We can

experimentally produce any g(k) we want.

Let g(k) be a Gaussian in &k

g

—a>/4)(k—k, )

(k)=e

But f g(k)e™dk is the Fourier Transform of a Gaussian in k.

Fourier
Transfor

and Inverse

Fourier

Transform

m | f(x)=2n)™"? f’ a(k)e™ dk get rid of k&

g(h)=2m) " f(x)e™dx get rid of x

So let us build W(x,0) as a superposition of ¢™. We can write g(k) in
amplitude, argument form:

eioc(k))

g(k)=|g(k)

complex
function
of real variable

We want |g(k)| to be sharply peaked near k = k;, so use a Gaussian

I

centerk = k
width Ak =2"%q
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do
OC(k) — (X(ko) + (k — k())% power series expansion

I kaO

%o
- . da
g(k)= e_(a2/4)(k_ko)2eiaoel(k_k(’)%

do.
, Ik P i[(k—k )—+kx}
g(k)elkx —e (a”/4)(k—k;) elo‘o e 07 dk

' - | rapidly oscillating in x except
independent of x at a special region of x

To find the value O%?\@ﬁi%@p%@&@%&ﬁiéﬁﬁf%w@qwnWe want
i[(k—k )d—“+kx}:o

dk " dk
do
—+x=0
dk
so if we choose 4% ___ we have stationary phase in k near
dk 0

k=k, - ,
k, and near x = x,. This means that the | g(k)e“ax integral
accumulates to its exact value near x = x,,.

revised 9/25/20 9:30 AM
10



5.73 Lecture #3 3-11

How does an integral over a rapidly oscillating integrand accumulate?
It accumulates near the stationary phase point, x,,.

1(k)

X =X, — O

ls(i)

N
>

k, k

Integral accumulates near k = k;, but only when x = x,,.

k
I(k)= J f (x,k)dk. 1If you examine the integrand and can identify
_°° the stationary phase region, you can
determine the value of the integral without
actually evaluating the integral.

Amaze your friends!
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NON-LECTURE
Joel Tellinghuisen, “Reflection and Interference Structure in Diatomic Franck-
Condon Factors,” J. Mol. Spectrosc. 103, 455-465 (1984). The figures in this paper
show how an integral accumulates at a stationary phase point of the integrand.
The stationary phase point, xsp, is the coordinate at which the vibrational
wavefunctions for states 1 and 2 have the same classical momentum,
pclassica1=[2m(E - V(xsp)]l/z. The stationary phase point is located at the crossing of
the V1 and V2 potential curves, Vi(xsp)=Va(xsp). The semiclassical approximation for
calculating vibrational overlap integrals is discussed on pages 278-285 of H.
Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules.

1/2

a ) N2 ;
\'P(X,O) __v e (a”/4)(k—k,) e i(k—ky)x, ekx dk
3/4 |
(2m)

—00 I

e— k ( X—XO ) elko)CO
L 1

This is a §-function.
It causes ¥(x,0) to be
localized near x,.

So we get |‘I’|2 localized at x((?), ko, Ax(¢), Ak if g(k) 1s Gaussian.

Ax=2"4
Ak =2"%/a
AxAk=1att=0

We have constructed a Gaussian wavepacket, W(x,?), from ¥(x,0) with
localization of xy(¢), Ax(f) minimum at # = 0, Gaussian in x, Gaussian in

k.

We can now ask how this W(x, t) can be modified by features of any
time-independent V (x).
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