Name

5.73

Quiz 3 ANSWERS

1. $\hat{H}\psi_n = E \psi$ $\hat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}$ $\Psi (,) = \psi^{-} \quad \text{where } \psi_n \text{ is an eigenstate of } \hat{H}$ $\Psi(x,t) = \sum_n \psi^{-} \quad \text{'$^\hbar$ superposition of eigenstates of } \hat{H}$ $\int_{-\infty}^{\infty} \psi^* \psi = 0 \text{ if } \neq$ = 1 if n = m

A. What, if any, is the time dependence of $|\Psi_n(x,t)|^2$?

If
$$\Psi_n(x,t) = \psi_n e^{-iE_n t/\hbar}$$

then $|\Psi_n(x,t)|^2 = \psi_n^* \psi_n (e^{iE_n t/\hbar}) (e^{-iE_n t/\hbar}) = \psi_n^* \psi_n$
time-independent

B. Let $\Psi(x,t) = 2^{-1/2} \left[\psi_1 e^{-iE_1 t/\hbar} + \psi_2 e^{-iE_2 t/\hbar} \right] = 2^{-1/2} e^{-iE_1 t/\hbar} \left[\psi_1 + \psi_2 e^{+i\omega_{12} t} \right]$ and $= \omega_{12} \equiv (E_1 - E_2) / \hbar$. Assume that ψ_1 and ψ_2 are real, not complex. Solve for $\left| \Psi_n(x,t) \right|^2$.

$$\begin{aligned} \left| \Psi(x,t) \right|^2 &= \frac{1}{2} \left[\left| \psi_1 \right|^2 + \left| \psi_2 \right|^2 + \psi_1^* \psi_2 e^{i\omega_{12}t} + \psi_1 \psi_2^* e^{-i\omega_{12}t} \right] \\ &= \frac{1}{2} \left[\left| \psi_1 \right|^2 + \left| \psi_2 \right|^2 + 2 \operatorname{Re} \left(\psi_1^* \psi_2 \right) \cos \omega_{12} t + 2 \operatorname{Im} \left(\psi_1^* \psi_2 \right) \sin \omega_{12} t \right] \end{aligned}$$

2. Let $\psi(x) = e^{-ikx}$, $E_{|k|} = \frac{\hbar^2 k^2}{2m} + V_0$, and $\psi(x,t) = e^{i(-kx - E_{|k|}t/\hbar)}$. Think of $\Psi(x,t)$ as a rigid object, $\Psi(x,0)$, moving along the x-axis at a constant velocity. This is the phase velocity, v_{ϕ} . The motion of the constant phase point is described by

$$x_{\phi}(t) = x_{\phi}(0) + v_{\phi}t.$$

Solve for v_{ϕ} .

$$constant = -kx_{\phi} - E_{|k|}t/\hbar$$

$$x_{\phi}(t) = -\frac{constant}{k} - \frac{E_{|k|}t}{\hbar k}$$

$$at t = 0 \qquad x_{\phi}(0) = -\frac{constant}{k}$$

$$x_{\phi}(t) = x_{\phi}(0) - \frac{E_{|k|}t}{\hbar k}$$

$$v_{\phi} = \frac{dx_{\phi}}{dt} = -\frac{E_{|k|}}{\hbar k} = -\frac{\left[\hbar^2 k^2 / 2m + V_0\right]}{\hbar k}$$

$$v_{\phi} = -\frac{\hbar k}{2m} - \frac{V_0}{\hbar k}$$

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.