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Outline 

Dynamical systems: 
I Linear and non-linear 
I Convergence 
I Linear algebra and Lyapunov functions 
I discrete and continuous 
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Dynamical systems 

◦ Discrete time system: time indexed by k 
− let x(k) ∈ Rn denote system state 
− examples: state of infection, levels of consumption for a product, 
opinions 

− amount of labor, steele and coal available in an economy, . . . 

◦ System dynamics: for any k ≥ 0 

x(k + 1) = F (x(k)) (1) 

for some F : Rn → Rn 

◦ Primary questions: 
I Is there an equilibrium x ? ∈ Rn , i.e. x ? = F (x ?). 
I If so, does x(k) → x ? and how quickly? 
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Linear dynamical systems 

◦ Linear system dynamics: for any k ≥ 0 

x(k + 1) = Ax(k) + b (2) 

I 

I 

I 

for some A ∈ Rn×n and b ∈ Rn 

example: Leontif’s input-output model of economy: output from one 
industrial sector may become an input to another industrial sector. 
best response to the consumption level of friends 

◦ We’ll study 
I Existence and characterization of equilibrium. 
I Convergence. 

◦ Initially, we’ll consider b = 0 
I Later, we shall consider generic b ∈ Rn 
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Linear dynamical systems 

◦ Consider 

x(k) = Ax(k − 1) 

= A × Ax(k − 2) 

· · · 
= Ak x(0) 

◦ So what is Ak ? 

◦ For n = 1, let A = a ∈ R+: ⎧ ⎪0 if 0 ≤ a < 1⎨ 
k→∞k x(k) = a x(0) → x(0) if a = 1⎪⎩∞ if 1 < a. 
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Linear dynamical systems 

◦ For n > 1, if A were diagonal, i.e., ⎞⎛ 
a1 

a2⎜⎜⎝ 
⎟⎟⎠A = . . . 

an 

I Then ⎛ ⎞k a1 
k a2 

⎜⎜⎝ 
⎟⎟⎠Ak = . . . 

k an 

I and, likely that we can analyze behavior x(k) 
I but, most matrices are not diagonal 
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Linear dynamical systems 

◦ Diagonalization: for a large class of matrices A, 
I it can be represented as A = SΛS−1 , where diagonal matrix ⎞⎛ 

Λ = 
⎜⎜⎝ 

λ1 

λ2
⎟⎟⎠. . . 

λn 

− and S ∈ Rn×n is invertible matrix 

◦ Then 

x(k) = (SΛS−1)k x(0) 

= SΛk S−1 x(0) = SΛk c 

where c = c(x(0)) = S−1x(0) ∈ Rn 
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Linear dynamical systems 

◦ Suppose ⎛ ⎞ 

S = ⎝s1 . . . ⎠sn 

◦ Then 

x(k) = SΛk c 
nX 

= ci λ
k 
i si 

i=1 
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Linear dynamical systems 

◦ Let 0 ≤ |λn| ≤ |λn−1| ≤ · · · ≤ |λ2| < |λ1| 

n � n �X X � λi �k 
x(k) = ci λi

k si = λk c1s1 + ci si1 λ1
i=1 i=2 

◦ Then ⎧ ⎪0 if |λ1| < 1⎨ 
k→∞kx(k)k → |c1|ks1k if |λ1| = 1⎪⎩∞ if |λ1| > 1 

◦ moreover, for |λ1| > 1, 

kλ−k x(k) − c1s1k → 0.1 
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Diagonalization 

◦ When can a matrix A ∈ Rn×n be diagonalized? 
I 

− When A has n distinct eigenvalues, for example 
− Another example: Real symmetric matrices 
− In general, all matrices are block-diagonalizable a la Jordan form 

◦ Eigenvalues of A 
I Roots of n order (characteristic) polynomial: det(A − λI ) = 0 
− Let them be λ1, . . . , λn 

◦ Eigenvectors of A 
I Given λi , let si 6= 0 be such that Asi = λi si 
− Then si is eigenvector corresponding to eigenvalue λi 

◦ If all eigenvalues are distinct, then eigenvectors are linearly 
independent. 
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Diagonalization 

◦ If all eigenvalues are distinct, then eigenvectors are linearly 
independent. 

◦ Proof. Suppose not and let s1, s2 are linearly dependent. 
I 

− that is, a1s1 + a2s2 = 0 for some a1, a2 =6 0 
− that is, a1As1 + a2As2 = 0, and hence a1λ1s1 + a2λ2s2 = 0 
− multiplying first equation by λ2 and subtracting second 

a1(λ2 − λ1)s1 = 0 

− that is, a1 = 0; similarly, a2 = 0. Contradiction. 
− argument can be similarly extended for case of n vectors. 
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Diagonalization 

◦ If all eigenvalues are distinct (λi =6 λj , i 6= j), then eigenvectors, 
s1, . . . , sn, are linearly independent. 

◦ Therefore, we have invertible matrix S , where ⎛ ⎞ 

S = ⎝s1 . . . sn ⎠ 

◦ Consider diagonal matrix of eigenvalues ⎛ ⎞ 
λ1 

Λ = ⎝ . . . ⎠ 

λn 
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Diagonalization 

◦ Consider ⎛ ⎞ 

AS = ⎝λ1s1 . . . ⎠λnsn ⎛ ⎞ ⎛ ⎞ 
λ1 

= ⎝s1 . . . ⎠ ⎝sn 
. . . ⎠ 

λn 

= SΛ 

◦ Therefore, we have diagonalization A = SΛS−1 

� � 
0 1 ◦ Remember: not every matrix is diagonalizable, e.g. A = 
0 0 
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Linear dynamical systems 

◦ Let us consider linear system with b 6= 0: 

x(k + 1) = Ax(k) + b 

= A(Ax(k − 1) + b) + b = x(k − 1) + (A + I )bA2 

. . . � k−1 �X 
Ak−j−1 = Ak x(0) + b. 

j=0 

◦ Let A = SΛS−1 , c = S−1x(0) and d = S−1b. Then 

n k−1X X 
x(k + 1) = ci si λ

k + di si ( λj )i i 
i=1 j=0 
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Linear dynamical systems 

◦ Let A = SΛS−1 , c = S−1x(0) and d = S−1b. Then 

n k−1X X 
x(k + 1) = ci si λ

k + di si ( λj )i i 
i=1 j=0 

◦ Let 0 ≤ |λn| ≤ |λn−1| ≤ · · · ≤ |λ2| ≤ |λ1|. Then 
I If |λ1| ≥ 1, the sequence is divergent (→∞) 
− If |λ1| < 1, it converges as 

nX
k→∞ di 

x(k) → si 
1 − λi ⎛i=1 ⎞1 

1−λ1 .⎝ . ⎠ S−1b (I − A)−1b= S = . 
1 

1−λn 
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Linear dynamical systems 

◦ For linear system, equilibrium x? should satisfy 

? x = Ax? + b 

◦ The solution to the above exists when A does not have an 
eigenvalue equal to 1, which is 

? x = (I − A)−1b 

I But, as discussed, it may not be reached unless |λ1| < 1! (unstable 
equilibrium) 
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Nonlinear dynamical systems 

◦ Consider nonlinear system 

x(k + 1) = F (x(k)) 

= x(k) + (F (x(k)) − x(k)) 

= x(k) + G (x(k)) 

where G (x) = F (x) − x 

◦ Continuous approximation of the above (replace k by time index t) 

dx(t) 
= G (x(t))

dt 

◦ When does x(t) → x?? 
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Lyapunov function 

◦ Let there be a Lyapunov function V : Rn → R+ 

◦ Such that 

1. V is minimum at x ? 

dV (x(t)) ?2. 
dt < 0 if x(t) =6 x 

?that is, rV (x(t))TG (x(t)) < 0 if x(t) 6= x 

?◦ Then x(t) → x 
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Lyapunov function: An Example 

◦ A simple model of Epidemic 
− Let I (k) ∈ [0, 1] be fraction of population that is infected 
− and S(k) ∈ [0, 1] be the fraction of population that is susceptible to 
infection 

− Population is either infected or susceptible: I (k) + S(k) = 1 

◦ Due to “social interaction” they evolve as 

I (k + 1) = I (k) + βI (k)S(k) 

S(k + 1) = S(k) − βI (k)S(k) 

where β ∈ (0, 1) is a parameter captures “infectiousness” 

◦ Question: what is the equilibrium of such a society? 
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Lyapunov function: An Example 

◦ Since I (k) + S(k) = 1, we can focus only on one of them, say S(k) 

◦ Then 

S(k + 1) = S(k) − β(1 − S(k))S(k) 

◦ That is, continuous approximation suggests 

dS(t) 
= −β(1 − S(t))S(t). 

dt 

◦ An easy Lyapunov function is V (S) = S 
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Lyapunov function: An Example 

◦ For V (S) = S : 

dV (S(t)) dS(t) 
= V 0(S(t))

dt dt 
= −β(1 − S(t))S(t) 

◦ Then, for S(t) ∈ [0, 1) if S(t) 6= 0, 

dV (S(t)) 
< 0 

dt 

◦ And V is minimized at 0 

◦ Therefore, if S(0) < 1, then S(t) → 0: entire population is infected! 
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