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Positive linear system 

◦ Positive linear system 

− Let A = [Aij ] ∈ Rn×n be such that Aij > 0 for all 1 ≤ i , j ≤ n 
− System dynamics: 

x(k) = Ax(k − 1), for k ≥ 1. 

◦ Perron-Frobenius Theorem: let A ∈ Rn×n be positive 

− Let λ1, . . . , λn be eigenvalues such that 

0 ≤ |λn| ≤ |λn−1| ≤ · · · ≤ |λ2| ≤ |λ1| 

− Then, maximum eigenvalue λ1 > 0 
− It is unique, i.e. |λ1| > |λ2|
− Corresponding eigenvector, say s1 is component-wise > 0 
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Positive linear system 

◦ More generally, we call A positive system if 

− A ≥ 0 component-wise 
− For some integer m ≥ 1, Am > 0 
− If eigenvalues of A are λi , 1 ≤ i ≤ n 
− Then eigenvalues of Am are λm

i , 1 ≤ i ≤ m 
− The Perron-Frobenius for Am implies similar conclusions for A 

◦ Special case of positive systems are Markov chains 

− we consider them next 
− as an important example, we’ll consider random walks on graphs 
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An Example 

◦ Shuffling cards 

Image courtesy of Poker Photos on flickr. License CC BY. 

◦ A special case of Overhead shuffle: 

− choose a card at random from deck and place it on top 

◦ How long does it take for card deck to become random? 

− Any one of 52! orderings of cards is equally likely 
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An Example 

◦ Markov chain for deck of 2 cards 

◦ Two possible card order: (1, 2) or (2, 1) 

◦ Let Xk denote order of cards at time k ≥ 0 

P(Xk+1 = (1, 2)) = P(Xk = (1, 2) and card 1 chosen)+ 

P(Xk = (2, 1) and card 1 chosen) 

= P(Xk = (1, 2)) × 0.5 + P(Xk = (2, 1)) × 0.5 

= 0.5 
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Notations 

◦ Markov chain defined over state space N = {1, . . . , n} 

− Xk ∈ N denote random variable representing state at time k ≥ 0 
− Pij = P(Xk+1 = j |Xk = i) for all i , j ∈ N and all k ≥ 0 X 

P(Xk+1 = i) = Pji P(Xk = j) 
j∈N 

◦ Let p(k) = [pi (k)] ∈ [0, 1]n , where pi (k) = P(Xk = i) X 
pi (k + 1) = pj (k)Pji , for alli ∈ N ⇔ p(k + 1)T = p(k)T P 

j∈N 

◦ P = [Pij ]: probability transition matrix of Markov chain 

− non-negative: P ≥ 0P 
− row-stochastic: j∈N Pij = 1 for all i ∈ N 
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Stationary distribution 

◦ Markov chain dynamics: p(k + 1) = PT p(k) 

− Let the probability transition matrix P > 0 : positive linear system 
− Perron-Frobenius: 

I PT has unique real positive largest eigenvalue: λmax = λ1 > 0 
? ? ?I Corresponding eigenvector: PTp = λmaxp , then p > 0. 

? ? ?I We assume p normalized such that p1 + . . . + pn = 1. 
?◦ We claim λmax = 1 and p(k) → p 

− Recall, kp(k)k → 0 if λmax < 1 or kp(k)k → ∞ if λmax > 1P P 
− But i pi (k) = 1 for all k, since i pi (0) = 1 and X 

pi (k + 1) = p(k + 1)T 1 = p(k)T P1 
i X 

= p(k)T 1 = pi (k) = 1. 
i 

− We have used P1 = 1 
− Therefore, λmax must be 1 and p(k) → c1p ? = p ? (argued before) P P 
− c1 = 1 since i pi (k) = i p ? = 1i 
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Stationary distribution 

?◦ Stationary distribution: if P > 0, then there exists p > 0 such that X 
? ? ? ? p = PT p ⇔ pi = Pji pj , for alli . 

j 

k→∞ ? p(k) → p 

◦ Above holds also when Pk > 0 for some k ≥ 1 

− Sufficient structural condition: P is irreducible and aperiodic 
− Irreducibility: 

− for each i =6 j , there is a positive probability to reach j starting from i 

− Aperiodicity: 

− There is no partition of N so that Markov chain state ‘periodically’ 
rotates through those partitions 

− Special case: for each i , Pii > 0 
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Random walk on Graph 

◦ Consider an undirected connected graph G over N = {1, . . . , n} 

− It’s adjacency matrix A 
− Let ki be degree of node i ∈ N 

◦ Random walk on G 

− Each time, remain at current node or walk to a random neighbor 
− Precisely, for any i , j ∈ N ⎧ ⎪ 1 if i = j⎨ 2 

1Pij = 
2ki 

if Aij > 0, i 6= j⎪⎩ 
0 if Aij = 0, i 6= j 

◦ Does it have stationary distribution? If yes, what is it? 
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Random walk on Graph 

◦ Answer: Yes, because irreducible and aperiodic. 

? 

− P (I + D−1A), p D1, where D = diag(ki ), 1 = [1] 

− Further, pi = ki /2m, where m is number of edges 

◦ Why? 

1 ? 1 = = 
2 2m 

?,T P 
1 ?,T (I + D−1A)

1 ?,T 1 ?,T D−1Ap = p = p + p
2 2 2 
1 1 1 1?,T ?,T = p + 1T A = p + (A1)T , because A = AT 

2 2m 2 4m 
1 1 1 1?,T ?,T ?,T ?,T = p + [ki ]

T = p + p = p . 
2 4m 2 2 

◦ Stationary distribution of random walk: 

? 1 ?− p = 
2 (I + D−1A)p 

− pi 
? ∝ ki → Degree centrality! 
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Katz Centrality 

◦ Consider solution of equation 

v = αAv + β 

for some α > 0 and β ∈ Rn 

− Then vi is called Katz centrality of node i 

◦ Recall 
− Solution exists if 

− det(I − αA) =6 0 
− equivalently A doesn’t have α−1 as eigenvalue 

− But dynamically solution is achieved if 
− largest eigenvalue of A is smaller than α−1 

◦ Dynamic range of interest: 0 < α < λ−1 (A)max 
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Convergence to stationary distribution 

− Let p(k) be probability distribution at time k 

p(k + 1) = PT p(k) 

− Let s1, s2, . . . , sn be eigenvectors of PT 

− with associated eigenvalues 1, λ2, . . . , λn 

− 0 ≤ |λn| ≤ · · · ≤ |λ2| < 1 
− Define spectral gap g(P) = 1 − |λ2| 

− Then, as argued for linear dynamics, we have 

nX 
λk p(k) = c1s1 + i ck sk 

i=2 

with some constants c1, . . . , cn 
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Convergence to stationary distribution 

− Therefore: 
nX 

kp(k) − c1s1k ≤ |λi |k |ci |ksi k ≤ (n − 1)C |λ2|k 

i=2 

nwhere C = max |ci |ksi ki=2 

− Subsequently 

log n + log C + log 1 
εk ≥ ⇒ kp(k) − c11k ≤ ε.1log |λ2| 

− The ε-convergence time scales as 

log n + log 1 
εTconv (ε) ∼ .1log |λ2| 

− Using log(1 − x) ≈ −x for x ∈ (0, 1), we get 

log n + log 1 
εTconv (ε) ∼ 

g(P) 
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Information spread 

◦ Network graph G over N = {1, . . . , n} nodes, edges E 
− Given information at one of the nodes, spread it to all nodes 
− By “Gossiping” 
− How long does it take? 

◦ Gossip dynamics: 
− At each time, each node i ∈ N does the following: 
− if node i does not have information, nothing to spread or gossip 
− else if it does have information, it sends it to one of it’s neighbors 

− let Pij = P(i sends information to j)P 
− by definition, = 1, andj∈N Pij 
− Pij = 0 if j is not neighbor of i 

− Example: uniform gossip 
− Pij = 1/ki for all (i , j) ∈ E 
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Information spread 

◦ Why study Gossip dynamics 
− This is how socially information spreads 

− More generally, this is how “contact” driven network effect spreads 

− This is how large scale distributed computer systems are built 
− e.g. Cassandra, an Apache Open Source Distributed DataBase 
− used by some of the largest organizations including Netflix, etc. 

◦ Key question 
− How long does it take for all nodes to receive information? 
− How does it depend on the graph structure, P? 

◦ Let us consider few examples: 

− A path 

− Star graph 

− Complete graph 
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Information spread and Conductance 

◦ Conductance of P = [Pij ] is defined as P 
i∈S,j∈Sc Pij

Φ(P) = min (1) 
S⊂N:|S|≤n/2 |S | 

◦ Examples: uniform gossip 

− Path: Φ ∼ 1 
n 

− Star graph: Φ ∼ 
n 
1 

− Complete graph: Φ ∼ 1
2 

I How long does it take for all nodes to almost surely receive 
information? 

◦ A crisp answer 

log n 
Tspr ∼ 

Φ(P) 

where Φ(P) is the conductance of P (and hence graph) 
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Cheeger’s Inequality 

◦ Spectral gap and conductance: 
− Markov chain can not converge faster than information spread 
− And information spreads in time log n/Φ(P) 
− That is (ignoring constants) 

log n log n ≤ ⇔ g(P) ≤ Φ(P)
Φ(P) g(P) 

− A remarkable fact known as Cheeger’s inequality: 

1
Φ(P)2 ≤ g(P) ≤ 2Φ(P). 

2 

Lectures 15-17 Introduction to Network Models 17 / 23 



Distributed computation 

◦ Generic question: 

− Given network G over nodes N with edges E 

− Each node i ∈ N has information xi 

− Compute a global function: 

f (x1, . . . , xn) 

− by communicating along the network links 

− processing local information at each node continually 

− while keeping limited local state at each node 
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Know your neighbors 

◦ The simplest possible example 

− Estimate number of nodes in the entire network at each node locally 
− there is no globally agreed unique names for each node 
− only local communications are allowed while keeping local state small 

◦ A distributed algorithm 
− Every node generates a random number 

− Node i ∈ N draws random variable Ri as per an Exponential 
distribution of mean 1 

− Compute global minimum, R? = mini∈N Ri 

− Using Gossip mechanism 

− Repeat the above for L times 
− R`

? , 1 ≤ ` ≤ L be global minimum computed during these L trials 

− Estimate of number of neighbors: n̂ = PL 
` 

L 
R

=1 
?
` 

Lectures 15-17 Introduction to Network Models 19 / 23 



Exponential distribution 

◦ Exponential distribution with parameter λ > 0 
− X be random variable with this distribution: for any t ≥ 0, � � � 

P X > t = exp − λt). 

◦ Minimum of exponential random variables 
− Let Xi , i ∈ N be independent random variables 
− Distribution of Xi is Exponential with parameter λi , i ∈ N 
− X ∗ = mini∈N Xi � � � � 

P X ∗ > t = P ∩i∈N Xi > t Y � � 
= P Xi > t 

i∈NY � � 
= exp − λi t 

i∈N � �X � � 
= exp − λi t . 

i 
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Exponential distribution 

◦ Exponential distribution with parameter λ > 0 
− X be random variable with this distribution: for any t ≥ 0, � � � 

P X > t = exp − λt). 

◦ Minimum of exponential random variables P 
− X ∗ = mini∈N Xi has exponential distribution with parameter i∈N λi 

◦ Mean of exponential variable X with parameter λ > 0 Z ∞ 

E[X ] = P(X > t)dt 
0Z ∞ 

= exp − λt)dt 
0 

1 h � i0 
= exp − λt)

λ ∞ 

1 
= . 

λ 
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Exponential distribution 

◦ Back to counting nodes 
− Node i ’s random number has exponential distribution of parameter 1 
− All nodes computed minimum of these numbers 
− Hence minimum had exponential distribution with parameter n 
− That is, mean of the minimum is 1/n 
− Averaging over multiple trials gives a good estimation of 1/n 

◦ How to add up numbers? 
− Node i has a number xi 
− Node i draws random variable per exponential distribution of 

parameter xi 
− Then minimum would have exponential distribution with parameter P 

i xi P 
− Subsequently, algorithm is computing estimation of i xi 
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Gossip algorithm for finding minimum 

◦ Gossip algorithm 
− Node i ∈ N has value Ri and goal is to compute R? = mini Ri 

R̂?− Node i ∈ N keeps an estimate of global minimum, say i 

− Initially, R̂ 
i 
? = Ri for all i ∈ N 

− Whenever node j contacts i 
R̂?− Node j sends to ij � � 

− Node i updates R̂? = min R̂? , R̂? 
i j i 

◦ How long does it take for everyone to know minimum? 
− Suppose R1 = R? . 
− Then the spread of minimum obeys exactly same dynamics as 

spreading information starting with node 1. 
− That is, information spread = minimum computation! 
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