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Positive linear system

o Positive linear system

— Let A=[A;] € R™" be such that A; >0 forall 1<i,j<n
— System dynamics:

x(k) = Ax(k = 1), for k>1.

o Perron-Frobenius Theorem: let A € R"*" be positive

— Let A1,..., A, be eigenvalues such that
0 < [An] < Apea| <o < A] < N

— Then, maximum eigenvalue A\; > 0
— It is unique, i.e. || > |\
— Corresponding eigenvector, say s; is component-wise > 0
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Positive linear system

o More generally, we call A positive system if

— A > 0 component-wise

— For some integer m>1, A" >0

If eigenvalues of Aare \j;, 1 <i<n

Then eigenvalues of A" are A", 1 <i<m

— The Perron-Frobenius for A™ implies similar conclusions for A

o Special case of positive systems are Markov chains

— we consider them next
— as an important example, we'll consider random walks on graphs
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An Example

o Shuffling cards

Image courtesy of Poker Photos on flickr. License CC BY.

o A special case of Overhead shuffle:

— choose a card at random from deck and place it on top

o How long does it take for card deck to become random?

— Any one of 52! orderings of cards is equally likely
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An Example

o Markov chain for deck of 2 cards

0.5

0.5 0.5

0.5

o Two possible card order: (1,2) or (2,1)
o Let X, denote order of cards at time kK > 0

P(Xxs1 = (1,2)) = P(Xk = (1,2) and card 1 chosen)+
P(Xk = (2,1) and card 1 chosen)
= P(X = (1,2)) x 0.5 + P(X, = (2,1)) x 0.5
=05
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o Markov chain defined over state space N = {1,..., n}

— Xk € N denote random variable representing state at time k > 0
— Pj =P(Xiy1 =j| Xk =1i) foralli,j € Nandall k >0

P(Xir1 = i) = PilP(Xk = j)
jen

o Let p(k) = [pi(k)] € [0,1]", where pi(k) = P(Xi = i)

pi(k+1) = pi(k)Pj, forallie N« p(k+1)" =p(k)"P
JEN

o P = [Pj]: probability transition matrix of Markov chain

— non-negative: P >0
— row-stochastic: >, Pj=1forallie N
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Stationary distribution

o Markov chain dynamics: p(k +1) = P p(k)

— Let the probability transition matrix P > 0 : positive linear system
— Perron-Frobenius:

» PT has unique real positive largest eigenvalue: Amax = A1 > 0
> Corresponding eigenvector: PTp* = Amaxp*, then p* > 0.
> We assume p* normalized such that pf +... 4+ p; =1.

o We claim Amax = 1 and p(k) — p*

— Recall, ||p(k)|] = 0 if Amax < 1 or ||p(k)|| = 00 if Amax > 1
— But 3}, pi(k) =1 for all k, since >, pi(0) =1 and

> pilk+1) = p(k+1)"1=p(k)" P1
=p()1=3"pi(k) = 1.
— We have used P1 =1

— Therefore, Amax must be 1 and p(k) — c1p* = p* (argued before)
— a=1since} . pi(k)=>,p =1
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Stationary distribution

o Stationary distribution: if P > 0, then there exists p* > 0 such that

p"=PTp" & pi = Z Pjip;, for alli.
J

p(k) “25° pr

o Above holds also when P¥ > 0 for some k > 1

— Sufficient structural condition: P is irreducible and aperiodic
— lrreducibility:

— for each i # j, there is a positive probability to reach j starting from i
— Aperiodicity:

— There is no partition of N so that Markov chain state ‘periodically’
rotates through those partitions
— Special case: for each i, P;; >0
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Random walk on Graph

o Consider an undirected connected graph G over N = {1,...,n}

— It's adjacency matrix A
— Let ki be degree of node i € N

o Random walk on G

— Each time, remain at current node or walk to a random neighbor
— Precisely, for any i,j € N

Tifi=j
Pj=1q 5 if Aj>0,i#]j
0if Aj =0,i#j

o Does it have stationary distribution? If yes, what is it?
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Random walk on Graph

o Answer: Yes, because irreducible and aperiodic.
— Further, p/ = ki/2m, where m is number of edges
o Why?
— P=1(I+D7A), p* = £ D1, where D = diag(ki), 1 = [1]

1 1 1
P*’TPZEP*’T(I+D_1A) _ _p*,T+_p*,TD—1A

2 2
= 1/3*’T+ Laratl *’T+—(A1) because A= AT
2 2m 2P 4m ’
1,; 1.0 1.0 1.1 g
T k1T = I ool = peT
SPT gLk SPT+op p

o Stationary distribution of random walk:

=34 DA
— p’ o< ki — Degree centrality!
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Katz Centrality

o Consider solution of equation

v=coAv+p

for some o > 0 and g € R"
— Then v; is called Katz centrality of node i

o Recall
— Solution exists if
— det(/ — aA) #0
— equivalently A doesn’t have a™
— But dynamically solution is achieved if

1 as eigenvalue

— largest eigenvalue of A is smaller than a1

o Dynamic range of interest: 0 < o < AL (A)
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Convergence to stationary distribution

— Let p(k) be probability distribution at time k

p(k+1) = PTp(k)

— Let s1,s,...,s, be eigenvectors of PT

— with associated eigenvalues 1, X2, ..., A,
—0< A< <Nl <1
— Define spectral gap g(P) =1 — | 2]

— Then, as argued for linear dynamics, we have

p(k) = c1s1 + Z /\f‘cksk
i=2

with some constants c¢y,..., ¢,
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Convergence to stationary distribution
— Therefore:

lp(k) = astl < Y il leilllsill < (n = 1)Claal*

i=2
where C = max_, |¢|||si]]

— Subsequently
log n + log C + log L
k> —ERT SR R lp(k) — a1 <.
8 o
— The e-convergence time scales as

log n + log 1
Tconv(E) ~ | 1 £
8 ]
— Using log(1 — x) &~ —x for x € (0,1), we get
log n + log %
Tconv(g) ~ £

g(P)

[m]
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Information spread

o Network graph G over N = {1,...,n} nodes, edges E
— Given information at one of the nodes, spread it to all nodes
— By “Gossiping”

— How long does it take?

o Gossip dynamics:
— At each time, each node i € N does the following:

— if node i does not have information, nothing to spread or gossip
J

— else if it does have information, it sends it to one of it's neighbors
— let P; =P(i sends information to j)
— by definition, > en Pi=1,and

— Pj =0if j is not neighbor of i
— Example: uniform gossip

— Pj=1/kj forall (i,j) € E
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Information spread

o Why study Gossip dynamics

— This is how socially information spreads

— More generally, this is how “contact” driven network effect spreads

— This is how large scale distributed computer systems are built
o Key question

— e.g. Cassandra, an Apache Open Source Distributed DataBase
o

— used by some of the largest organizations including Netflix, etc

How long does it take for all nodes to receive information?
— A path

How does it depend on the graph structure, P?
Let us consider few examples:

— Star graph

— Complete graph
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Information spread and Conductance
o Conductance of P = [Pj] is defined as

O(P) =

o Examples: uniform gossip

ZieS,jeSf PU

5]

mi
SCN:|S|<n/2
— Path: & ~ }1

(1)

— Star graph: ¢ ~ %

— Complete graph: ¢ ~ %
information?

» How long does it take for all nodes to almost surely receive
o A crisp answer

Tspr

log n
~ 2

®(P)

where ®(P) is the conductance of P (and hence %aph)i
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Cheeger’s Inequality

o Spectral gap and conductance:

— Markov chain can not converge faster than information spread
— And information spreads in time log n/®(P)
— That is (ignoring constants)

log n

I
< ogn

g(P)

d(P

~

& g(P)<o(P)
— A remarkable fact known as Cheeger’s inequality:

SO(P)? < g(P) < 20(P).
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Distributed computation

o Generic question:

— Given network G over nodes N with edges E

— Each node i € N has information x;

— Compute a global function:

f(x1, ..., Xn)

— by communicating along the network links

Lectures 15-17

— processing local information at each node continually

— while keeping limited local state at each node

Introduction to Network Models




Know your neighbors

The simplest possible example

— there is no globally agreed unique names for each node
o A distributed algorithm

— Estimate number of nodes in the entire network at each node locally

— Every node generates a random number

— only local communications are allowed while keeping local state small
distribution of mean 1

— Node i € N draws random variable R; as per an Exponential
— Compute global minimum, R* = min;cny R;

— Using Gossip mechanism
— Repeat the above for L times

— R;, 1<£< L be global minimum computed during these L trials
— Estimate of number of neighbors: A =

__ L
T
X RY

[m]
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Exponential distribution

o Exponential distribution with parameter A > 0

— X be random variable with this distribution: for any t > 0,

P(X > t) = exp (— At).

o Minimum of exponential random variables

- X' = min;eN X,'

— Let Xi, i € N be independent random variables
— Distribution of X; is Exponential with parameter \;, i € N

IP(X* > t) = P( Nien Xi > t)
ieN

[TFees o

ieN

= Hexp ( - )\,-t)

=exp(— (Z)\;)t).

[m]
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Exponential distribution

o Exponential distribution with parameter A > 0
— X be random variable with this distribution: for any t > 0,

P(X > t) = exp (— At).

o Minimum of exponential random variables

— X* = min;en X; has exponential distribution with parameter 3.\ \i

o Mean of exponential variable X with parameter A > 0
E[X] :/ P(X > t)dt
0
= / exp (— At)dt

0
[exp (- /\t)}zo
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Exponential distribution

o Back to counting nodes

All nodes computed minimum of these numbers

That is, mean of the minimum is 1/n

Node i's random number has exponential distribution of parameter 1
Hence minimum had exponential distribution with parameter n

Averaging over multiple trials gives a good estimation of 1/n
o How to add up numbers?
— Node i has a number x;

parameter Xx;

DX

Node i draws random variable per exponential distribution of

Then minimum would have exponential distribution with parameter

Subsequently, algorithm is computing estimation of ). x;
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Gossip algorithm for finding minimum

o Gossip algorithm
Node i € N has value R; and goal is to compute R* = min; R;
— Node i € N keeps an estimate of global minimum, say R*
— Initially, Rf = R; forall i e N
Whenever node j contacts i
— Node j sends f?f to i

— Node i updates R* = min (RJ?*, R:*)

o How long does it take for everyone to know minimum?
— Suppose Ry = R*.
— Then the spread of minimum obeys exactly same dynamics as
spreading information starting with node 1.
— That is, information spread = minimum computation!
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