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Why models for networks? 

I Usual trade-off between losing details in an idealized representation while 
gaining insights into the simplified problem 

I Simple representations of complex networks 
I Derive properties mathematically 
I Predict properties and outcomes 
I Common features of different real networks 

Newman, M. E. J.,  and M. Girvan. "Finding and evaluating community structure in networks." 
Physical Review E 69 (2004): 026113.  © American Political Society . All rights reserved. 

Adamic, Lada and Natalie Glance. "The Political Blogosphere and the 2004 U.S. Election: Divided They 
Blog." March 4, 2005. © Lada Adamic and Natalie Glance. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. This content is excluded from our Creative Commons license. For more information, 
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Degree distribution 

I Let N(d) denote the number of vertices with degree d 
N(d) ⇒ Fraction of vertices with degree d is P [d ] := |V | 

I The collection {P [d ]}d≥0 is the degree distribution of G 
I Histogram formed from the degree sequence (bins of size one) 

P(d) 

d 

I P [d ] = probability that randomly chosen node has degree d 

⇒ Summarizes the local connectivity in the network graph
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Friendship paradox 

I First observed by Feld (1991) 

⇒ “Why Your Friends Have More Friends Than You Do”

⇒ American Journal of Sociology
I Example: Network of 135 households from a rural Indian village 

⇒ Banerjee, Chandrasekhar, Duflo, and Jackson (2013)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Friendship paradox 

I Jackson (2016) 

Jackson, Matthew O. "The Friendship Paradox and Systematic Biases in Perceptions and Social Norms." November 2017. © Matthew O. Jackson. All rights reserved. 
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I Left: empirical distribution of households’ degrees (blue) and the distribution 
of average neighbors’ degrees (red) 

I Right: empirical distribution of ratio of average neighbors’ degree over 
own degree 
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Friendship paradox 

I Network of firm-level input-output linkages in Japan 
I Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) 

Disaster Area Firms Firms in the Rest of Japan 

Log Sales 11.54 11.74 
(1.52) (1.64) 

Customers’ Log Sales 14.83 14.51 
(2.37) (2.45) 

Suppliers’ Log Sales 14.30 14.60 
(2.21) (2.49) 

Carvalho, Vasco M., Makoto Nirei, Yukiko U. Saito, et al. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake." December 2016.            
© Vasco M. Carvalho, Makoto Nirei, Yukiko U. Saito, and Alireza Tahbaz-Salehi . All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I Firms’ customers and suppliers are on average larger than the average firm 
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Friendship paradox 

Theorem [Jackson, 2016] In any given undirected network, the average degree of 
neighbors at least as high as the average degree: 

n X P 
dj X1 1 j∈Ni ≥ di . 

n di n 
i :di >0 i=1 

Furthermore, the inequality is strict if and only if at least two linked agents have 
different degrees. 

I In any given network, P � � � � X X X 
j∈Ni 

dj di dj (di − dj )2 

= + = + 2 .
di dj di di dj 

i :di >0 i<j :i∈Nj i<j :i∈Nj 

I And as a result, 

n X P 
dj X X 

j∈Ni ≥ 2 = di . 
di

i :di >0 i<j :i∈Nj i=1 
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The Erdős-Rényi (ER) model 

I Very simple model ⇒ Not applicable to many real networks 

⇒ Easy to get insights, studied in the 1950s

I Generating an ER random graph Gn,p

⇒ 1) Choose a number of vertices n

⇒ 2) Choose a probability p

⇒ 3) For each possible edge, add it with probability p

1 
6 

I Examples of G10, ⇒ |E | is a random variable 
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Degree distribution of Gn,p

I Q: Degree distribution P [d ] of the Erdős-Rényi graph Gn,p ? 

I Define I {(v , u)} = 1 if (v , u) ∈ E , and I {(v , u)} = 0 otherwise. 

⇒ Fix v . For all u =6 v , the indicator RVs are i.i.d. Bernoulli(p)

I Let Dv be the (random) degree of vertex v . Hence, X 
Dv = I {(v , u)} 

u 6=v 

⇒ Dv is binomial with parameters (n − 1, p) and� � 
n − 1 

P [d ] = P [Dv = d ] = p d (1 − p)(n−1)−d

d 

I In words, the probability of having exactly d edges incident to v 

⇒ Same for all v ∈ V , by independence of the Gn,p model
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Behavior for large n 

I Q: How does the degree distribution look like for a large network? 

I Recall Dv is a sum of n − 1 i.i.d. Bernoulli(p) RVs 

⇒ Central Limit Theorem: Dv ∼ N (np, np(1 − p)) for large n
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I Makes most sense to increase n with fixed E [Dv ] = (n − 1)p = µ 

⇒ Law of rare events: Dv ∼ Poisson(µ) for large n
d −µ µ ⇒ P [Dv = d ] = e d! 
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Behavior of Gn,p for increasing p 

I ER graphs exhibit phase transitions 

⇒ Sharp transitions between behaviors as n →∞
ER connectivity theorem 

ln(n) I A threshold function for the connectivity of Gn,p(n) is p(n) = n 

ln(n) I Let p(n) = λ then n 

⇒ If λ < 1 ⇒ P(connected) → 0 as n → infty

⇒ If λ > 1 ⇒ P(connected) → 1 as n → infty

ER giant component theorem 
I A threshold function for the emergence of a giant component in 

1 Gn,p(n) is p(n) = n

λ I Let p(n) = then n 

⇒ If λ < 1 ⇒ Size of largest component ∼ ln(n) as n → infty

⇒ If λ > 1 ⇒ Size of largest component ∼ n as n → infty
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Illustrating the phase transitions 

I You will test this in the homework 

⇒ Plot the relative size of largest component

⇒ As a function of log(p)

I Movie: Gn,p for increasing p 

⇒ https://www.youtube.com/watch?v=mpe44sTSoF8
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