Origin, Destination, and Transfer Inference (ODX)

- Using automatically collected data: AFC, AVL, APC
- Infers destinations in open systems
- Infers transfers
- Only captures existing demand
- Does not make inferences for all fare transactions
 - only one tap
 - cash
 - $\circ \quad \text{fare evasion} \quad$
 - trips on other modes
- Validated with surveys
- Needs to be scaled up to full demand

Key Automated Data Collection Systems

- Automatic Vehicle Location (AVL)
- Automatic Fare Collection (AFC)
- Automatic Passenger Counting (APC)

OD Matrix Estimation

Route Level

1.258J 11.541J ESD.226J

Lecture 10, Spring 2017

Network Level

Full Intermodal Journey Inference

APC provides "control totals"

Route Level OD Estimation with APC

TIME	BUS ID	ROUTE	TRIP ID	DIRECTION	Boardings	Alightings	STOP
9/12/2005 12:08:10 AM	6734	20	15065450	East	0	3	WASHINGTON + STATE
9/12/2005 12:00:04 AM	6734	20	15065450	East	1	1	MADISON + PEORIA
9/12/2005 12:03:29 AM	6734	20	15065450	East	0	0	WASHINGTON + CANAL
9/12/2005 5:37:19 AM	6729	20	15067244	East	0	1	WASHINGTON + LASALLE

Dev	Route #1		Destination								
APC + s	seed matrix	Stop 1	Stop 2	Stop 3	Stop 4	Target on					
Origin	Stop 1		25	10	2	40					
	Stop 2			5	15	30					
	Stop 3				9	20					
	Stop 4										
	Target off	0	30	20	40	90					

1.258J 11.541J ESD.226J Lecture 10, Spring 2017 3

Metro

Bus line

Iterative Proportional Fitting (IPF)

- Also known as biproportional fitting and matrix scaling
- Scales cell values of a sampled origin-destination matrix so that row and column sums equal marginal target values (counted boardings and alightings)
- If all values are strictly positive, IPF converges to a unique **MLE** solution
- Zeroes affect the solution

Initialization						
	Α	В	С	D	Total Boardings	Target Boardings
Α		1	1	1	3	40
В			1	1	2	30
С				1	1	20
D						
Total Alightings		1	2	3		
Target Alightings		30	20	40		90

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Iterative Proportional Fitting (IPF)

Step 1							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		13.3	13.3	13.3	40	40	13.3
В			15	15	30	30	15.0
C				20	20	20	20.0
D							
Total Alightings		13.3	28.3	48.3			
Target Alightings		30	20	40			
Step 2							
	Α	В	С	D	Total Boardings	Target Boardings	
Α		30	9.41	11	50.4	40	
В			10.6	12.4	23.0	30	
С				16.6	16.6	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		2.3	0.7	0.8			

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Iterative Proportional Fitting (IPF)

Step 3							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		23.8	7.46	8.75	40	40	0.8
В			13.8	16.2	30	30	1.3
С				20	20	20	1.2
D							
Total Alightings		23.8	21.3	44.9			
Target Alightings		30	20	40			
Step 4							
	Α	В	С	D	Total Boardings	Target Boardings	
А		30	7.02	7.79	44.8	40	
В			13	14.4	27.4	30	
C				17.8	17.8	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		1.3	0.9	0.9			

Iterative Proportional Fitting (IPF)

Step 5							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		26.8	6.26	6.95	40	40	0.9
В			14.2	15.8	30	30	1.1
С				20	20	20	1.1
D							
Total Alightings		26.8	20.5	42.7			
Target Alightings		30	20	40			
Step 6							
	Α	В	С	D	Total Boardings	Target Boardings	
Α		30	6.12	6.51	42.6	40	
В			13.9	14.8	28.7	30	
С				18.7	18.7	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		1.1	1.0	0.9			

7

5

Iterative Proportional Fitting (IPF)

Step 7							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		28.2	5.74	6.11	40	40	0.9
В			14.5	15.5	30	30	1.0
С				20	20	20	1.1
D							
Total Alightings		28.2	20.3	41.6			
Target Alightings		30	20	40			
Step 8							
	Α	В	С	D	Total Boardings	Target Boardings	
А		30	5.66	5.88	41.5	40	
В			14.3	14.9	29.2	30	
C				19.2	19.2	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		1.1	1.0	1.0			

Iterative Proportional Fitting (IPF)

Step 9							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		28.9	5.45	5.66	40	40	1.0
В			14.7	15.3	30	30	1.0
С				20	20	20	1.0
D							
Total Alightings		28.9	20.2	40.9			
Target Alightings		30	20	40			
Step 10							
	Α	В	С	D	Total Boardings	Target Boardings	
А		30	5.41	5.53	40.9	40	
В			14.6	14.9	29.5	30	
C				19.5	19.5	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		1.0	1.0	1.0			

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Iterative Proportional Fitting (IPF)

Step 11							
	Α	В	С	D	Total Boardings	Target Boardings	Factor
Α		29.3	5.28	5.4	40	40	1.0
В			14.8	15.2	30	30	1.0
С				20	20	20	1.0
D							
Total Alightings		29.3	20.1	40.6			
Target Alightings		30	20	40			
Ch							
Step 12							
	Α	В	С	D	Total Boardings	Target Boardings	
Α		30	5.25	5.33	40.6	40	
В			14.7	15	29.7	30	
C				19.7	19.7	20	
D							
Total Alightings		30	20	40			
Target Alightings		30	20	40			
Factor		1.0	1.0	1.0			

Route Level ODX with AFC and AVL

	TfL	МВТА	Seoul		
AFC Rail	Closed	Open			
AFC Bus	Open	Open	Olasad		
AVL	iBus	Announcements Heartbeat Time points	Detailed, Including transfers		
Control	ETM (Buses)	APC (sample)			
totals	Gatelines (Rail stations)	some			

9

Origin Inference

Matching the AFC transactions with the AVL data to infer boarding stops

Key Assumptions

- The destination of many trip segments is close to the origin of the following trip segment.
- \circ $\,$ No intermediate private transportation mode trip segment
- Passengers will not walk a long distance
- Last trip of a day ends at the origin of the first trip of the day (symmetry assumption)

Origin Inference Results: London

- 10 weekdays, 6.1 to 6.5 million Oyster bus boardings per day
- 96% of boarding locations inferred within ± 5 min
 - 96% within ± 2 min
 - \circ 93% within ± 1 min
 - 28% between arrival and departure times
- 2.6% beyond ± 5 min.
- 1.4% not matched to iBus route or trip

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Destination Inference

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Destination Inference

Destination Inference Results: London

Destination inference: 74.6%

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

1.258J 11.541J ESD.226J 1.258J 11.541J ESD.226J 17 Lecture 10, Spring 2017 Lecture 10, Spring 2017

Destination Inference Results: London

15.6 to 16.1 million Oyster transactions 9.5 to 10.1 million journey stages ٠ 3.0 to 3.1 million Oyster cards Frequency 350,000 74.5% of bus alighting times and locations inferred within 1 km of subsequent Oyster tap 300,000 5% are the only transaction that day 6.7% beyond maximum distance (750 m) 3.2% of buses heading away from first origin 250,000 of dav 3.6% of buses heading away from next origin 200,000 2.5% origin or next origin not inferred 2.5% beyond origin-error tolerance 1 50,000 2.5% subsequent origin beyond origin-error tolerance 100.000 \$0,000 600 700 750 800 200 400 \$00 000 Distance between subsequent tap and closest stop on current route (meters)

Ten-weekday average: 6-10 and 13-17 June 2011

- Small stop-by-stop differences between estimated OD and results from the Bus OD Survey (BODS)
- BODS underestimated the ridership in peak periods and midday, especially when BODS survey return rates are low (50%-80%).
- Value for transportation planning

Comparison to Other Sources

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

1.000

Destination Inference: Minimum Cost Path

© National Academies of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Inference Probability

Destination Inference: MBTA

23

Interchange (Transfer) Inference

Journey stage: any portion of a rider's journey that is represented by a single Oyster bus record or by a rail entry/exit pair.

Interchange (Transfer): a transition between two consecutive journey stages that does not contain a trip-generating activity. Its primary purpose, rather, is to connect a previous stage's origin to a subsequent stage's destination.

Full journey: a sequential set of journey stages connected exclusively through interchanges.

Trip-Linking Assumptions

Interchange Inference Results

Ten-day average: 6-10 and 13-17 June 2011

- Link status inferred for 91% of journeys stages
 - link status could not be inferred for remaining 9% of stages: assumed not linked
- Stages per journey: •
 - one stage: 4 million (66%) 0
 - two stages: 1.5 million (25%) 0
 - three stages: 400,000 (7%) 0
 - four or more stages: 170,000 (3%) 0

27

Comparison to Travel Surveys (LTDS)

Trip-Level Scaling with Transfer Information and without APC

• The complete OD matrix ${\bf R}$ can be divided into an inferred part ${\bf I}$ and a missing part ${\bf M}.$

$$\mathbf{R} = \mathbf{I} + \mathbf{M}$$

• The missing part can be divided into trips with uninferred destinations U and trips not observed N.

$$\mathbf{M} = \mathbf{U} + \mathbf{N}$$

• Therefore

$$\mathbf{R} = \mathbf{I} + \mathbf{U} + \mathbf{N}$$

and we want to estimate ${\bf R}$ as

$$\tilde{\mathbf{R}} = \mathbf{I} + \tilde{\mathbf{U}} + \tilde{\mathbf{N}}$$

Trip-Level Scaling

- AFC, AVL, and ODX give an OD matrix, but only for a sample of passenger trips
- APC gives full count of boardings and alightings

 for all vehicles, a fraction of vehicles, or none
- Iterative Proportional Fitting (IPF) can be used to assign remaining destinations in probability
 - control totals are APC boardings and alightings minus ODX boardings and alightings

1.258J 11.541J ESD.226J

Lecture 10, Spring 2017

- Trip-Level Scaling with Transfer
- Trips followed by transfers may have different OD structure.
- Assume that all observed trips followed by a transfer have an inferred destination, i.e. no trips followed by a transfer in U.
- Destinations of uninferred trips in U should be scaled excluding trips followed by a transfer.
- $\bullet\,$ Let ${\bf u}$ be a vector of boardings with uninferred destinations.
- Let $\bar{\mathbf{L}}$ be a matrix of destination probability distributions for each origin for trips not followed by a transfer.
- The uninferred part U is estimated by

$$ilde{\mathbf{U}} = \mathbf{u} \mathbf{\bar{L}}$$

29

Trip-Level Scaling with Transfer Information and without APC

- A portion of trips N is not observed.
 - Trips with uninferred origins
 - Trips without farebox interaction
- They can be estimated by combining ODX with passenger counts, e.g. APC data.
- Let $\bar{\mathbf{n}}$ be a vector of boarding scaling factors.
- · Assuming destinations are distributed like observed trips,

$$ilde{\mathbf{N}} = ar{\mathbf{n}} \left(\mathbf{I} + ilde{\mathbf{U}}
ight)$$

Trip-Level Scaling with Transfer Information and without APC

$$\begin{split} \tilde{\mathbf{R}} &= \mathbf{I} + \tilde{\mathbf{U}} + \tilde{\mathbf{N}} \\ &= \mathbf{I} + \tilde{\mathbf{U}} + \bar{\mathbf{n}} \left(\mathbf{I} + \tilde{\mathbf{U}} \right) \\ &= \left(\mathbf{1} + \bar{\mathbf{n}} \right) \left(\mathbf{I} + \tilde{\mathbf{U}} \right) \\ &= \left(\mathbf{1} + \bar{\mathbf{n}} \right) \left(\mathbf{I} + \mathbf{u} \bar{\mathbf{L}} \right) \end{split}$$

35

Journey Matrix Scaling

Count	Node	Itinerary								
Station/Stop	Movement	AB	ABC	ABDE	СВ	CBDE	DE			
А	in									
в	out	⊥ b	inary loca	tion-itiner	ary incid	lence matr	ix °			
с	in	0	0	0	1	1				
С	out			0	5 ₀					
D	in									

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

37

Journey Matrix Scaling

Initialize:

Update:

Count Lo	ocation			Itine	Totals					
Station/Stop	Movement	AB	ABC	ABDE	CB	CBDE	DE	∆_hat	Δ	Contro
A	in	1	1	1	0	0	0	-	102	400
В	out	1	0	1	1	1	0	-	116	450
С	in	0	0	0	1	1	0	-	38	150
С	out	0	1	0	0	0	0	-	24	100
D	in	0	0	1	0	1	1	-	90	350
α		1.00	1.00	1.00	1.00	1.00	1.00			
α	t	74	76	148	38	74	38			
(1+0	a)t	148	152	296	76	148	76			

Journey Matrix Scaling

$$T_i = (1 + \alpha_i)t_i \quad \forall i \in I$$

$$\Delta_n = C_n - \sum_{i \in I} t_i b_{n,i} = \sum_{i \in I} t_i \alpha_i b_{n,i} \quad \forall n \in N$$

Journey Matrix Scaling

Initialize:

 $\hat{\alpha}_i \leftarrow 1.0 \quad \forall i \in I$

Update:
$$\begin{split} \widehat{\Delta}_{n} \leftarrow \sum_{i \in I} b_{n,i} \widehat{\alpha}_{i} t_{i} \quad \forall \, n \in N \\ \widehat{\alpha}_{i} \leftarrow \widehat{\alpha}_{i} \; \frac{\sum_{n \in N} b_{n,i} \frac{\Delta_{n}}{\widehat{\Delta}_{n}}}{\sum_{n \in N} b_{n,i}} \quad \forall \, i \end{split}$$
 $\forall i \in I$

Count Location		Itinerary						Totals		
Station/Stop	Movement	AB	ABC	ABDE	CB	CBDE	DE	∆_hat	Δ	Control
А	in	1	1	1	0	0	0	298	102	400
В	out	1	0	1	1	1	0	334	116	450
С	in	0	0	0	1	1	0	112	38	150
С	out	0	1	0	0	0	0	76	24	100
D	in	0	0	1	0	1	1	260	90	350
α		1.00	1.00	1.00	1.00	1.00	1.00			
αt		74	76	148	38	74	38			
(1+α)t		148	152	296	76	148	76			

Journey Matrix Scaling

Initialize:

 $\hat{\alpha}_i \leftarrow 1.0 \quad \forall i \in I$

Count Location		Itinerary						Totals		
Station/Stop	Movement	AB	ABC	ABDE	СВ	CBDE	DE	∆_hat	Δ	Control
A	in	1	1	1	0	0	0	298	102	400
В	out	1	0	1	1	1	0	334	116	450
С	in	0	0	0	1	1	0	112	38	150
С	out	0	1	0	0	0	0	76	24	100
D	in	0	0	1	0	1	1	260	90	350
α		0.34	0.33	0.35	0.34	0.34	0.35			
αt		26	25	51	13	25	13			
(1+α)t		100	101	199	51	99	51			

1.258J 11.541J ESD.226J

Lecture 10, Spring 2017

Journey Matrix Scaling

Initialize:

Update:

$$\hat{\alpha}_i \leftarrow 1.0 \quad \forall i \in I$$

$$\begin{split} \widehat{\Delta}_{n} \leftarrow \sum_{i \in I} b_{n,i} \widehat{\alpha}_{i} t_{i} \quad \forall \, n \in N \\ \\ \widehat{\alpha}_{i} \leftarrow \widehat{\alpha}_{i} \; \frac{\sum_{n \in N} b_{n,i} \frac{\Delta_{n}}{\widehat{\Delta}_{n}}}{\sum_{n \in N} b_{n,i}} \quad \forall \, i \in I \end{split}$$

Count Location		ltinerary						Totals		
Station/Stop	Movement	AB	ABC	ABDE	CB	CBDE	DE	∆_hat	Δ	Control
А	in	1	1	1	0	0	0	102	102	400
в	out	1	0	1	1	1	0	115	116	450
С	in	0	0	0	1	1	0	38	38	150
С	out	0	1	0	0	0	0	25	24	100
D	in	0	0	1	0	1	1	90	90	350
α		0.35	0.32	0.35	0.34	0.34	0.35			
αt		26	24	52	13	25	13			
(1+α)t		100	100	200	51	99	51			

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Journey Matrix Scaling

Convergence of Journey Matrix Scaling Heuristic vs. Standard Deviation of α Across Itineraries

Journey Matrix Scaling

42

Scaling Factor Results

1.258J 11.541J ESD.226J Lecture 10, Spring 2017

Full-Journey Scaling Results

Journey Scaling vs. IPF (rail links only)

45 information, see https://ocw.mit.edu/help/faq-fair-use/. 1.258J 11.541J ESD.226J Lecture 10, Spring 2017

References

- Gordon, Jason B. 2012. Intermodal Passenger Flows on London's Public Transport Network: Automated Inference of Full Passenger Journeys Using Fare-Transaction and Vehicle-Location Data. Master thesis, MIT.
- Gordon, Jason B., Koutsopoulos, Haris N., Wilson, Nigel H.M., Attanucci, J. 2013. Automated Inference of Linked Transit Journeys in London Using Fare-Transaction and Vehicle-Location Data. Transportation Research Record, 2343, pp. 17–24.
- Southwick, C.W. 2016. Understanding Bus Passenger Crowding Through Origin Destination Inference. Master thesis, MIT.
- Sánchez-Martínez, G.E. 2017. Inference of Public Transportation Trip Destinations by Using Fare Transaction and Vehicle Location Data: Dynamic Programming Approach. Transportation Research Record, 2652, pp. 1–7.
- Thesis, papers, poster, and visualization available at <u>http://jaygordon.net</u>

© J. Gordon. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

47

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.