
 Origin, Destination, and Transfer 
Inference 
(ODX) 

● Using automatically collected data: AFC, AVL, APC 
● Infers destinations in open systems 
● Infers transfers 
● Only captures existing demand 
● Does not make inferences for all fare transactions 

○ only one tap 
○ cash 
○ fare evasion 
○ trips on other modes 

● Validated with surveys 
● Needs to be scaled up to full demand 
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OD Matrix Estimation 

Route Level 

Key Automated Data Collection Systems 

● Automatic Vehicle Location (AVL) 
● Automatic Fare Collection (AFC) 
● Automatic Passenger Counting (APC) 
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Route Level OD Estimation with APC 

APC provides “control totals” 

Network Level 

Full Intermodal Journey Inference 
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Iterative Proportional Fitting (IPF) Iterative Proportional Fitting (IPF) 

● Also known as biproportional fitting and matrix scaling 
● Scales cell values of a sampled origin-destination matrix 

so that row and column sums equal marginal target values 
(counted boardings and alightings) 

● If all values are strictly positive, IPF converges to a unique 
MLE solution 

● Zeroes affect the solution 

Iterative Proportional Fitting (IPF) Iterative Proportional Fitting (IPF) 
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Iterative Proportional Fitting (IPF) Iterative Proportional Fitting (IPF) 

Iterative Proportional Fitting (IPF) Route Level ODX with AFC and AVL 
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Origin Inference 

Matching the AFC transactions with the AVL data to infer 
boarding stops 
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Destination Inference: Closest Stop 

Key Assumptions 
○ The destination of many trip segments is close to the origin of the 

following trip segment. 
○ No intermediate private transportation mode trip segment 
○ Passengers will not walk a long distance 
○ Last trip of a day ends at the origin of the first trip of the day (symmetry 

assumption) 

Bus Rail 

Origin Inference Results: London 

● 10 weekdays,  6.1 to 6.5 million Oyster bus boardings per 
day 

● 96% of boarding locations inferred within ± 5 min 
○ 96% within ± 2 min 
○ 93% within ± 1 min 
○ 28% between arrival and departure times 

● 2.6% beyond ± 5 min. 
● 1.4% not matched to iBus route or trip 
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Destination Inference 
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Destination Inference Destination Inference Results: London 

Feasibility Tests 

● distance and time between
alighting and next boarding stop

● relative location

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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Destination Inference Results: London 

Ten-weekday average: 6-10 and 13-17 June 2011 

● 15.6 to 16.1 million Oyster transactions 
● 9.5 to 10.1 million journey stages 
● 3.0 to 3.1 million Oyster cards 
● 74.5% of bus alighting times and locations 

inferred within 1 km of subsequent Oyster tap 
● 5% are the only transaction that day 
● 6.7% beyond maximum distance (750 m) 
● 3.2% of buses heading away from first origin 

of day 
● 3.6% of buses heading away from next origin 
● 2.5% origin or next origin not inferred 
● 2.5% beyond origin-error tolerance 
● 2.5% subsequent origin  beyond origin-error 

tolerance 

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 

Destination inference:  74.6% 

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
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1.258J 11.541J  ESD.226J 
Lecture 10, Spring 2017 

Comparison to Other Sources 

● Small stop-by-stop differences between estimated OD and
results from the Bus OD Survey (BODS)

● BODS underestimated the ridership in peak periods and
midday, especially when BODS survey return rates are
low (50%-80%).

● Value for transportation planning

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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Destination Inference: Minimum Cost Path 
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Destination Inference: MBTA Inference Probability 
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Interchange (Transfer) Inference Interchange (Transfer) Inference 

Journey stage: any portion of a rider’s journey that is 
represented by a single Oyster bus record or by a rail 
entry/exit pair. 

Interchange (Transfer): a transition between two consecutive 
journey stages that does not contain a trip-generating activity. 
Its primary purpose, rather, is to connect a previous stage’s 
origin to a subsequent stage’s destination. 
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Trip-Linking Assumptions 

Examples: 
• Maximum interchange

distance
• Circuity between

stages
• Ending journey near

origin
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Examples: 
• Interchange time

(distance)
• Maximum bus wait time

(headways)

Example: 
• Must not continue at

same station, same
route, etc.

Full journey: a sequential set of journey stages connected 
exclusively through interchanges. 
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Interchange Inference Results 

Ten-day average: 6-10 and 13-17 June 2011 

● Link status inferred for 91% of journeys stages
○ link status could not be inferred for remaining 9% of stages: assumed not

linked

● Stages per journey:
○ one stage: 4 million (66%)
○ two stages: 1.5 million (25%)
○ three stages: 400,000 (7%)
○ four or more stages: 170,000 (3%)

© MIT. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/ faq-fair-use/. 

1.258J 11.541J  ESD.226J 
Lecture 10, Spring 2017 

27 28 

https://ocw.mit.edu/help/faq-fair-use/


Comparison to Travel Surveys (LTDS) Trip-Level Scaling 

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Trip-Level Scaling with Transfer 
Information and without APC 

● AFC, AVL, and ODX give an OD matrix, but only for a 
sample of passenger trips 

● APC gives full count of boardings and alightings 
○ for all vehicles, a fraction of vehicles, or none 

● Iterative Proportional Fitting (IPF) can be used to assign 
remaining destinations in probability 
○ control totals are APC boardings and alightings minus ODX boardings 

and alightings 
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Trip-Level Scaling with Transfer 
Information and without APC 
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Trip-Level Scaling with Transfer Trip-Level Scaling with Transfer 
Information and without APC Information and without APC 
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Journey Matrix Scaling Journey Matrix Scaling 

● Problem 
○ Estimate expansion factors to scale Oyster-inferred full-journeys to 

represent non-Oyster and incompletely documented Oyster journeys. 

● Challenges 
○ Control totals available for stations, routes, but not itineraries 
○ Large number of unique itineraries observed per day (if bus activity is 

aggregated to the route level) 
○ Trillions of solutions can satisfy control totals 

● Approach 
○ Scale all full-journey itineraries to satisfy control totals 
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Journey Matrix Scaling Journey Matrix Scaling 
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Journey Matrix Scaling Journey Matrix Scaling 
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Journey Matrix Scaling Journey Matrix Scaling 
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Journey Matrix Scaling Journey Matrix Scaling 

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/. 

1.258J 11.541J  ESD.226J 1.258J 11.541J  ESD.226J 43 44 
Lecture 10, Spring 2017 Lecture 10, Spring 2017 

https://ocw.mit.edu/help/faq-fair-use/


 

Scaling Factor Results 
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Full-Journey Scaling Results 

1.258J 11.541J  ESD.226J 
Lecture 10, Spring 2017 

© J. Gordon. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 

Journey Scaling vs. IPF (rail links only) 
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