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Overview of Underwater 
Acoustics

Reference used in this lecture:  Lurton, X. 2002.  An introduction to 
underwater acoustics.  New York:  Springer.  Slides also developed 
by Dr. Ethem Sozer of MIT Sea Grant.
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Definitions
p:  pressure, measured relative to hydrostatic, Pa
ρ:  density, measured relative to hydrostatic, kg/m3

E:  bulk modulus of the fluid, Pa, δp = E [ δρ / ρ ]
[u,v,w]: deflections in [x,y,z]-directions, relative to 

the hydrostatic condition, m

Then in one 
dimension (pipe)
p = E [ -δu / δx ]

δx

u
u + δu

+x
undeformed

deformed
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One-dimensional Case cont.

Newton’s Law:      
δp = - ρ utt δx OR
px = - ρ utt

Constitutive Law:
p = - E δu / δx OR
p = - E ux

δx

p
p + δp

u

diff wrt x

diff wrt tt

pxx = [ ρ / E ] ptt

a wave equation!
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Let p(x,t) = Po sin(ωt – kx)

Insert this in the wave equation:
- Po k2 sin( ) = - [ ρ / E ] Po ω2 sin( ) 

[ ω / k ]2 = E / ρ 
Wave speed      c = ω / k = [ E / ρ ] 1/2

This is sound speed in water, independent of 
pressure, or frequency.

ρ ~ 1000 kg/m3, E ~ 2.3e9 N/m2   c ~ 1500 m/s

Wavelength λ = 2π/k = 2πc/ω = c/f;  1kHz : 1.5m

time

space
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In Three Dimensions:  A CUBE

δx
δy

Newton’s Law:
px = - ρ utt pxx = - ρ uttx

py = - ρ vtt pyy = - ρ vtty

pz = - ρ wtt pzz = - ρ wttz

Constitutive Law:
- E ux = p / 3 - E uttx = ptt / 3
- E vy = p / 3 - E vtty = ptt / 3
- E wz = p / 3 - E wttz = ptt / 3

deformed

undeformed

δz

Lead to Helmholtz Equation:

pxx+pyy+pzz = ptt / c2

or ∆p = ptt / c2

where ∆ is the LaPlacian
operatorAll directions deform uniformly
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Particle Velocity
Consider one dimension again:  
px = -ρ utt px = -ρ (ut)t

If   p(x,t) = Po sin(ωt - kx)   and   ut(x,t) = Uto sin(ωt - kx) 

-kPo cos( ) = -ρ ω Uto cos( )   Uto = Po / ρ c        

Note velocity is in phase with pressure!
[ρ c]: characteristic impedance;   

water: ρc ~ 1.5e6 Rayleighs “hard”
air:  ρc ~   500 Rayleighs “soft”

In three dimensions:
rp = -ρ Vt where 

rp =  px i + py j + pz k and
V =  ut i + vt j + wt k
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Note equivalence of the following:
λ = c / f     and     ω / k = c

There is no dispersion relation here; this is the only 
relationship between ω and k!

Consider Average Power through a 1D surface:
P(x) = [ 1 / T ] s T p(τ,x) ut(τ,x) dτ
 =  [ 1 / T ] s T Po Uto sin2(ωτ - kx ) dτ
 = Po Uto / 2
 = Po

2 / 2 ρ c = Uto
2 ρc / 2

 Acoustic Intensity in W/m2

 If impedance ρc is high, then it takes little power to 
create a given pressure level; but it takes a lot of power 
to create a given velocity level

Power per unit area is 
pressure times velocity
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Spreading in Three-Space
At time t1, perturbation is at radius r1;  at time t2, radius r2 
P(r1) = Po

2(r1) / 2 ρ c
P(r2) = Po

2(r2) / 2 ρ c 

Assuming no losses in water; then 
P(r2) = P(r1) r1

2 / r2
2 = Po

2 (r1) r1
2 / 2 ρ c r2

2

and
Po(r2) = Po(r1) r1 / r2

Let r1 = 1 meter (standard!) 
P(r) = Po

2(1m) / 2 ρ c r2

Po(r) = Po(1m) / r
Uto(r) = Po(1m) / ρ c r

r

r2

r1

Pressure level and particle velocity
decrease linearly with range
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Decibels (dB)
10 * log10 (ratio of two positive scalars):

Example:
x1 = 31.6 ; x2 = 1 1.5 orders of magnitude difference

10*log10(x1/x2) =  15dB
10*log10(x2/x1) = -15dB

RECALL        log(x1
2/x2

2) =  log(x1/x2) + log(x1/x2) = 2 log(x1/x2)

In acoustics, acoustic intensity (power) is referenced to 1 W/m2 ;
pressure is referenced to 1 µPa

10*log10[ P(r) / 1 W/m2 ] = 10*log10 [ [ Po
2(r) / 2 ρ c] / 1 W/m2 ]                     

= 20*log10 [ Po(r) ] – 10*log10(2ρc)

= 20*log10 [ Po(r) / 1µPa ] – 120 - 65
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Spreading Losses with Range
Pressure level in dB is 
20 log10 [ Po(r) / 1µPa ] - 185   = 
20 log10 [ Po(1m) / r / 1µPa ]  - 185  = 
20 log10 [ Po(1m) / 1µPa ] – 20 log10 [r] -185

Example: At 100m range, we have lost 
40dB or four orders of magnitude in sound intensity
40dB or two orders of magnitude in pressure 

(and particle velocity)
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Attenuation Losses with Range
Acoustic power does have losses with transmission distance – primarily 
related to relaxation of boric acid and magnesium sulfate molecules in 
seawater.  Also bubbles, etc.
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At 100 Hz, ~1dB/1000km:
OK for thousands of km,
ocean-scale seismics and 

communications 

At 10kHz, ~1dB/km:
OK for ~1-10km, 
long-baseline acoustics

At 1MHz, 3dB/10m:
OK for ~10-100m,
imaging sonars, Doppler 
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The Piezo-Electric Actuator
∆t

strain = constant X electric field 
ε = d X E or

∆t / t = d X ( V / t )
where d = 40-750 x 10-12 m / V  
Drive at 100V, we get only 4-75 nm thickness change!

E

t

V+Series connection 
amplifies 
displacement

**still capable of MHz performance**

V-
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Directionality Pattern

• ITC 2010 toroidal transducer
• More gain over the sides 

(horizontal plane) than the over 
the top and bottom (vertical 
plane)

• ITC 1001 spherical transducer
• Uniform response over all 

angles ( 0 to 2π) on both 
horizontal and vertical plane
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The Piezo-Electric Sensor
electric field = constant X stress

E = g X σ or
V = t g σ

where g = 15-30 x 10-3 V/mN

Ideal Actuator:  Assume the water does not 
impede the driven motion of the material

Ideal Sensor: Assume the sensor does not deform 
in response to the water pressure waves
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Typical Transducer:  
120 to 150 dB re 1µPa, 1m, 1V means
106 – 107.5 µPa at 1m for each Volt applied   or
1-30 Pa at 1m for each Volt applied

Typical Hydrophone:
-220 to -190 dB re 1µPa, 1V means
10-11 to 10-9.5 V for each µPa incident                or
10-5 to 10-3.5 V for each Pa incident

So considering a transducer with 16Pa at 1m per Volt, and 
a hydrophone with 10-4 V per Pa:

If V = 200V, we generate 3200Pa at 1m, or 3.2Pa at 1km, 
assuming spreading losses only;

The hydrophone signal at this pressure level will be 
0.00032V or 320µV !
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Shallow Water Propagation

• Assumptions:
– Constant sound speed (c = 1500 m/s)
– Surface and bottom are smooth

r=100m 

d=20m 

h=80m 

source destination 

θ1 θ1

θ2 θ2

Surface reflection loss (RLs) = 1 dB
Bottom reflection loss (RLb) = 3 dB
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Length of propagation paths 
Direct path => d0 = 100m
Bottom reflection => d1 = 2h/cos(q1) = 107.7 m

θ1 = atan(r/2h)
Surface reflection => d2 = 2d/cos(θ2) = 188.7 m

θ2 = atan(r/2d)
SBS reflection =>      d3 = 2(2d/cos(θ3)+ h/cos(θ3)) = 260 m
BSB reflection =>      d4 = (2d/cos(θ4)+ 2(h/cos(θ4))) = 399.5 m 

r=100m 

d=20m

h=80m 

source destination 

θ1 θ1

θ2 θ2
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Determining the Range of a Source

• Tracker sends a pulse, p(t) = A sin(2πfct), 0<t<Ts
• Target replies, p1(t) = A sin(2πfc(t-τp-τt))
• Tracker receives, p2(t) = A sin(2πfc(t-τp-τt-τp))
• How can we measure τp+τt+τp ?
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Determining the Direction of the 
Target

θθ r1-r4 

d 

Quadrant 1 

Quadrant 2 Quadrant 3 

Quadrant 4 

Η1

Η2Η3 

Η4 

• Four hydrophones
• Measure delay at 

each hydrophone
• Compare delay pairs 

(τ1, τ2), (τ2, τ3),(τ3, τ4), 
(τ4, τ1) to find which 
quadrant

• Estimate the angle

θ = sign(r1-r4)acos( |r1-r4| / d)
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