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Data and Time Series 
Analysis Techniques
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• Does the work 
stand up to 
scrutiny?

– Use of controls
– Calibration
– Data quality
– Data processing
– Documentation and 

record-keeping!

Ask Yourself:
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Controls 
Did you really measure what you thought?

• Rat Maze:  Is the maze acoustically navigable?  (R. Feynman)
• Mass Spectroscopy:  When you put in a sample of known 

composition, are the other bins clean?
• When measuring electrical resistance, touch the probes together.

Check a precision resistor too. 
• Resonance in load measurement rigs?
• When measuring hull resistance, does zero speed give zero force?

Take every opportunity to eliminate doubt!
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Calibration

• More time can be spent on calibration than the rest of the experiment!  
• Sensors should be calibrated and re-checked using independent 

references, such as:
– Manufacturer’s specifications
– Another sensor with very well-known calibration 
– A tape measure, protractor, calipers, weights & balance, stopwatch, etc..

• Calibration range should include the expected range in the experiment.
• Some statistics of the calibration:

– Precision of fit (r-value or σ)
– Linearity (if applicable)

• Understand special properties of the sensor, e.g., inherent nonlinearity, 
drift, PWM output



Massachusetts Institute of Technology 12.097

Sample Statistics

• Sample mean m:
• Sample standard dev. σ:

σ = sqrt [ ( (x1-m)2 + (x2-m)2 + … + (xn-m)2 ) / (n-1) ] 
• Error budgets for multiplication and addition 

(σA is standard deviation of A):
(A + σA)(B + σB) ~ AB + AσB + BσA

Example: (1.0 + σ0.2)(3.0 + σ0.3) ~ 3.0 + σ0.9

(A + σA) + (B + σB) = A + B + σ(A+B)
Example: (1.0 + s0.2) + (3.0 + s0.3) = 4.0 + σ0.5
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Gaussian (Normal) Distribution
Probability Density Function f(x) ~ Histogram

f(x) = exp [ - (x-m)2 / 2σ2 ] / sqrt(2π) / σ

This is the most common 
distribution encountered 
in sensors and systems.

+/- 1σ covers 68.3% 
+/- 2σ covers 95.4%
+/- 3σ covers 99.7%

Area under f(x) is 1!
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Data and Sensor Quality
• Signal-to-Noise Ratio 

(SNR):  compares σ to the 
signal you want

• Repeatability/Precision:  If 
we run the same test again, 
how close is the answer?

• Accuracy:  Take the average 
of a large number of tests –
is it the right value?
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Time and Frequency Domain
• Fourier series/transforms establish an exact

correspondence between these domains, e.g.,
Xm = s cos( 2π m t / T ) z(t) dt * 2 / T,  m = 0,1,2,…

Ym = s  sin( 2π m t / T ) z(t) dt * 2 / T

z(t) = X0 / 2 + Σ Xm cos( 2π m t / T ) + Σ Ym sin( 2π m t / T )

0

0

T

T
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Time Resolution in 
Sampled Systems

• The Sampling Theorom shows that the highest 
frequency that can be detected by sampling at frequency 
ωs = 2π/∆t is the Nyquist rate:  ωN = ωs / 2.

• Higher frequencies than this are “aliased” to the range 
below the Nyquist rate, through “frequency folding.” This 
includes sensor noise! anti-aliasing filters

• The required rate for “visual” analysis of the signal, and 
phase and magnitude calculation is much higher, say ten 
samples per cycle.
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Filtering of Signals
Filterx xf

Use good judgement!
filtering brings out trends, reduces noise
filtering obscures dynamic response

Causal filtering:  xf(t) depends only on past 
measurements – appropriate for real-time 
implementation
Example:  xf (t) = (1-ε) xf (t-1) + ε x(t-1)

Acausal filtering:  xf(t) depends on measurements 
at future time – appropriate for post-processing
Example:  xf (t) = [ x(t+1) + x(t) + x(t-1) ] / 3
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A first-order filter transfer 
function in the freq. domain 
(where jω is the derivative 
operator):

xf(jω) / x(jω) = λ / (jω + λ)

At low ω, this is approximately
1 (that is, λ/λ)

At high ω, this goes to 0
magnitude, with 90
degrees phase lag 
(λ/jω = -jλ/ω)

Time domain equivalent:
dxf/dt = λ (x – xf)

In discrete time, try
xf(k) = (1-λ∆t) xf(k-1) +

λ∆t x(k-1)
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• BUT linear filters will not handle outliers very well! 
• First defense against outliers:  find out their origin 

and eliminate them at the beginning!
• Detection:  Exceeding a known, fixed bound, or an 

impossible deviation from previous values. Example:  
vehicle speed >> the possible value given thrust level 
and prior tests.

• Second defense:  set data to NaN (or equivalent), so 
it won’t be used in calculations. 

• Third defense:   try to fill in.  
Example:
if abs(x(k) – x(k-1)) > MX,

x(k) = x(k-1) ;
end;

Limited usefulness!
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