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IX. Mass Wasting Processes 

1. Debris Flows 

Flow types: 

Debris flow, lahar (volcanic), mud flow (few gravel, no boulders)


Flowing mixture of water, clay, silt, sand, gravel, boulder, etc.


Flowing is liquefied with about 15% of water by weight.


Rheology: function of grain size distribution.


Mud flow !non-newtonian fluid


Wet grain flow
! friction and collisions with pore pressure 

Most Debris flows: debated if more like fluid mud or more like wet grain flow. 

Mud flows: 
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MOVIE SHOW (made by USGS in 1984) on Debris Flow Processes 

1. Landslides 

Types of Landslide: 

Rock avalanches (Blackhawk slide is an example) 

Rock fall (toppling of blocks) 

Shallow soil landslides (tabular) 

Deep bedrock landslides (tabular) 

Earth flows (slow oozing ! reactivations over long time) 

Rotational slumps 

Infinite Slope Stability Analysis (initiation of failure) 

•	 Assumptions 
1.	 2-D planar failure at impermeable interface (no side-wall or end 

effects) 
2.	 Mohr-Coulomb failure criterion 
3.	 Slope-parallel groundwater seepage 

F ! factor of safety


F = 1, at failure (or critical)


F > 1, stable


F < 1, unstable
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where 

F =
strength (resisting force)

driving force
=

st

! bwet

=
c+ (" wet # p) tan$

%bwet
ghS

!

!

is the internal friction angle.


Infinite slope approximation no end effects, assume parallel seepage (uniform


level of saturation)


where is internal friction angle. s
t
= c+! tan"

i
!
i

More generally, many factors (including root networks, capillary tension, weathering) 

influence the effective cohesion; also pore pressures reduce normal stress: 

s
t
= c '+ (! " p) tan# c '

F
s
=

s
t

driving stress
!1

! b = "bghsin# !
b

; where is total effective cohesion. 

at failure (by definition) 

where is wet soil bulk density. {As derived earlier for 

unaccelerated fluids and a rigid block on an inclined plane}.


Wet bulk density:
!
b
= v

s
!
s
+m(1" v

s
)!

w
, where v

s
is volume fraction 

solids and m is fraction of soil depth saturated. 

{normal stress component due to wet weight of soil} ! = "bghcos#

SKETCH 
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Thus write factor of safety equation: 

Fs =
c '+ (! " p) tan#

$ b
=
c '+ (%bghcos& " p) tan#

%bghsin&

Pore pressure for parallel seepage (part of the “infinite slope approximation”) 

p = !wgmhcos"

Substitute into factor of safety equation: 

Fs =
c '+ (!b "m!w )ghcos# tan$

!bghsin#

F
s
!1 failure 
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Implications for Cohesionless soil 

c ' = 0 if cohesionless 

F
s
=
(!

b
"m!

w
) tan#

!
b
tan$

F
s

tan!
max

=
("

b
#m"

w
) tan$

"
b

=1 at maximum stable slope, set this and solve for maximum stable slope: 

If dry, cohesionless, m = 0 and thus: 

tan!
max

= tan" , !
max

= "

Angle of Repose = angle of internal friction! 

Seepage Forces 

The above derivation was done in terms of pore pressures. An alternative formulation 

instead considers stresses due to the action of seepage forces (fluid drag on sediment 

particles). These are both equivalent – just different ways to cast the problem 

mathematically. The use of pore pressures was introduced to simplify the 

mathematics. However, for some problems, recasting in terms of seepage forces 

yields improved intuition. 

We Follow the work of Iverson and Major (1986), WRR 

Seepage Forces can act in both x- and z-directions and thus contribute to both normal and 

shear stresses. Generally: 

Normal stress: 

Driving stress: 

( ) ( )zceseepageforghm
wb

+! "## cos

5 



12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple September, 2004 

where 

( ) ( )xceseepageforghm
wb

+! "## sin

wb
m!! " is buoyant weight of wet soil. (Note we treat only buoyancy, not 

pore pressures) 

In the case of parallel seepage, seepage force in (z) = 0; so normal stress is simply the 

normal component of the buoyant weight (intuitively satisfying) 

-

fseepage =
q

K
!wg

In the x direction: 

where q is water flux per unit volume, so this is seepage force per unit volume. 

Darcy’s law: q = K sin! , where K is hydraulic conductivity. 

{per unit volume} 

Thus, stress due to seepage force in (x) is = !" singmh
w

(ie. this is a force per unit area of 

fseepage = !wgsin"

soil, where mh is the height of soil column over which the seepage force acts). If you 

look at the expression for the shear (driving) stress: 

( ) ( )xceseepageforghm
wb

+! "## sin

you see that the effect of the seepage force is to cancel out the effect of buoyancy – this is 

why the driving stress is the shear stress due to the full wet weight of the soil. 

Substituting the seepage force term into the factor of safety equation yields: 

( )

!"

#!""

sin

tancos

gh

ghmc
F

b

wb

s

$+%
=

The same relation – only a more intuitive, and more general, derivation. 

Sub-aqueous Slope Stability 

Consider a talus cone on the sea floor. Cohesionless material, fully saturated (m = 1). Is 
the angle of repose less than, greater than or equal to the angle of internal friction and 
why? 

Recall for dry, cohesionless soil: tan!
max

= tan" !
max

= ", 
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If you try to address this problem in terms of pore pressures it can be confusing, and most 
students will guess the angle of repose is reduced due to the lubricating effects of water. 
However, if you consider the problem in terms of seepage forces, you will realize that 
there are no seepage forces involved because the water is not moving. Thus from above 
you can see that both normal forces and shear forces are due simply to the buoyant 

tan!
max

= tan" !
max

= "weight of the material, and for cohesionless soil , -- exactly the 
same underwater, on dry land, on Mars, on the Moon, etc. 

Non-parallel Seepage 

Iverson and Major (1986), WRR, exploited the generalized treatment in terms of seepage 
forces to address the effects of non-parallel seepage on slope stability of cohesionless 
material under fully saturated conditions (m = 1). This problem is rather nasty in terms of 
pore pressures, but, as they demonstrated can be rather elegantly treated in terms of 
seepage forces. 

They write: 

( )[ ]
( )[ ] !"##

!"##
$

coscos1

sinsin1
tan

i

i

wt

wt

%%

+%
=

Where gbt !" = g
ww

!" =
b

!, , is wet bulk density, i is the magnitude of the seepage 
force vector and λ is its orientation. 

For parallel seepage λ = 90º and !sin=i . SKETCH 

This readily confirms that the solution for parallel seepage is correct (same as we had 
above for case m = 1 and c’ = 0). 

From analysis of their equation above, Iverson and Major (1986) can discover generally 
what seepage directions are most destabilizing to the slope. 

What is your intuitive ranking: vertical down, horizontal out, normal down, parallel 
seepage directions and why? 

Normal down: increases stability. No effect on shear stress, counteracts normal 
buoyancy. 

Vertical down: no net effect. Slightly increases normal stress, and equally increases shear 
stress. 

Parallel: decreases stability. No effect on normal stresses, but counteracts buoyancy in 
shear stress. 
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Horizontal: most destabilizing. Decreases normal stress and increases shear stress. 
Condition expected at base of slopes – this is one of the main deviations in nature from 
conditions assumed in the “Infinite Slope” Stability Analysis considered above. 

Flow Convergence and Soil Saturation Levels 

Iida (1984), Japanese Geomorphological Union considered the other major deviation in 
nature from conditions assumed in the “Infinite Slope” Stability Analysis: Flow 
convergence dictated by surface topography. 

FIGURE: Iida, 1984 definition sketch: problem formulation 

Assume unsaturated flow/storage is negligible; write relation conservation of 
mass (water) 

( ) ( )tIatq =

( ) ( ) ( ) !costzVthVtq darcysatdarcy "==

( ) ( )
darcyV

tq
tz =! "cos
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q(t) is discharge/unit width, I rainfall intensity, a(t) contributing area, Δz(t) 
saturation level, and Vdarcy is the Darcian velocity 

For a straight slope 

( ) tVta
x

= !
"

cos

p

darcy

x

V
V =

!sinKVdarcy =

(no convergence), constant slope (α) 

; 

Vx is horizontal component of interstitial velocity (porosity correction relates 
Darcy velocity to true interstitial fluid velocity, cosine term gives the horizontal 
component of fluid velocity), λp porosity, and K hydraulic conductivity 

Why is ? – Darcy’s Law 

{Darcy’s Law} 

!sinKVdarcy =

l
KVdarcy

!

!
"

#

Parallel Seepage: 
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!sinKVdarcy =

p

x

K
V

!

"" cossin
=

Combine above relations into conservation of mass: 
( ) ( )tIatq = ; ( ) ( )

darcyV
tq

tz =! "cos

to write: 

( ) t
IK

tq
p!
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="

Steady-state solution (Δzmax; t = Tc) 
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(εFor convergent > 0) topography 

Recall that arc length = Lε; Δa = average arc length x ΔL 
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Comparison to the solutions for non-convergent topography (planar 
hillside

, due to the effects of convergence. 
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, we see that the depth of saturation is enhanced by a factor of 

Steady-state solution (Δzmax; t = Tc) 
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Recall 

At steady state, the saturation enhancement factor can be written entirely in terms 
of morphologic variables: 
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Note, if storm is brief (Ts < Tc), peak Δz occurs after the storm ends, but is of 
lesser magnitude than Δzmax 

FIGURE: Iida, 1984: Δz(t) vs. ε 

Limitations of infinite slope stability analysis 
- Neglects 3-D effects 

- Neglects stress-field rotations (Anderson and 
Sitar, 1995) 
- Neglects flow through shallow bedrock fractures 
- Seismic loading affects both driving stress and 
pore pressures 
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