
COOPERATIVE GAMES

MIHAI MANEA

1. Definitions

A coalitional (or cooperative) game is a model of interacting decision-makers that focuses

on the behavior of groups of players.

N denotes the set of players. A coalition is a group of players S ⊂ N . We refer to N as

the grand coalition. Every coalition S has a set of available actions AS.

An outcome consists of a partition of N (coalition structure) and one action associated

with each coalition in the partition,

(Sk, ak) ¯k=1,...,k with Sj ∩ Sk = ∅, ∀j 6= k,∪kSk = N, ak ∈ ASk
.

Each agent i has preferences over the set of all outcomes represented by a utility function

ui. We restrict attention to settings without externalities. Agent i cares only about the

action of the coalition he belongs to, i.e., ∃Ui : ∪S A R s.t.3i S →

ui((Sk, ak) ¯k=1,...,k) = Ui(aj) if i ∈ Sj.

Example 1 (Three-player majority game). Three agents have access to a unit of output.

Any majority—coalition of two or three agents—may control the allocation of the output.

The output may be shared among the members of the winning coalition any way they wish.

No agent can produce any output by himself. Each agent only cares about the amount of

output he receives (prefers more to less). Actions for each coalition? Feasible outcomes?

Example 2 (Firm and workers). Consider a firm and n potential workers. The firm generates

profit f(k) from hiring k workers, where f is some exogenously given function. Any coalition

consisting only of workers produces profit 0. Each agent only cares about his own share of

the profit. Actions for each coalition? Feasible outcomes?

Date: January 19, 2017.
I thank Gabriel Carroll for proofreading.

Department of Economics, MIT 



2 MIHAI MANEA

Example 3 (Marriage market). A group of men and a group of women can be matched

in pairs. A matching of a coalition of men and women is a partition of the coalition into

man-woman pairs and single individuals. Each person cares only about her partner (and

how she/he compares to being single). Actions for each coalition? Feasible outcomes?

Definition 1. A game is cohesive if for every outcome (Sk, ak) ¯k=1,...,k there exists an outcome

generated by the grand coalition which is at least as desirable as (Sk, ak) ¯k=1,...,k for every

player.

The solution concepts we consider assume that the grand coalition forms (rather than

outcomes involving a non-trivial coalition structure) and have attractive interpretations only

for cohesive games.

Definition 2. A game with transferable payoffs associates to any coalition S a real number

v(S), which is interpreted as the worth of the coalition S. We assume v(∅) = 0. The set of

actions available to coalition S consists of all possible divisions (xi)i of v(S) among the∈S

members of S, i S xi = v(S).∈

When is a game

∑
with transferable payoffs cohesive? Which of the games above have

transferable payoffs? What are the corresponding worth functions?

2. The Core

Which action may we expect the grand coalition to choose? We seek actions that withstand

the pressures imposed by the opportunities of each coalition. We define an action of the

grand coalition to be “stable” if no coalition can break away and choose an action that all

its members prefer. Formally, a coalition S blocks an action aN of the grad coalition if there

is an action aS ∈ AS that all members of S strictly prefer to aN . The set of all actions that

cannot be blocked forms the core.

Definition 3. The core of a coalitional game is the set of actions aN of the grand coalition

N that are not blocked by any coalition.

If a coalition S has an action that all its members prefer to an action aN of the grand

coalition, we say that S blocks aN .
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For a game with transferable payoffs with payoff function v, a coalition S can block the

allocation (xi)i N iff xS < v(S), where xS =
∑

i S xi. Hence the allocation x is in the core∈ ∈

of the game iff xS ≥ v(S),∀S ⊂ N .

Example 4 (Two-player split the dollar with outside options). v({1}) = p, v({2}) =

q, v({1, 2}) = 1. The core is given by the set of allocations

{(x1, x2)|x1 + x2 = 1, x1 ≥ p, x2 ≥ q}.

What happens for p = q = 0? What if p+ q > 1?

Argue that the core of the three-player majority game is empty.

When is the core non-empty? A vector (λS)S∈2N of non-negative numbers is a balanced

collection of weights if

λS = 1, i
{S⊂N |i

∀
∈S

∈ N.
}

A payoff function v is balanced if

∑

S

∑
λSv(S) ≤ v(N) for every balanced collection of weights λ.

⊂N

Interpretation: each player has a unit of time, which he needs to distribute among all his

coalitions. For coalition S to be active for λS time and generate payoff λSv(S), all its

members need to be active in S for this fraction of time λS. A game is balanced if there is no

allocation of time across coalitions that yields a total value greater than that of the grand

coalition.

Theorem 1 (Bondareva 1963; Shapley 1967). A coalitional game with transferable payoffs

has a non-empty core iff it is balanced.

Proof. Consider the linear program

min
∑

xi s.t.
i∈N

∑
xi )

i S

≥ v(S ,∀S ⊂ N.
∈

The core is non-empty iff the minimized sum is not greater than v(N).1 The dual of the

latter linear program is given by

max
∑

λSv(S) s.t. λS ⊂ .
S N

≥ 0,∀S N &
∑

λS
∈ S3i

≤ 1,∀i ∈ N
2

1Actually, the optimal value needs to be exactly v(N) in this case.
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By definition, the game is balanced iff the optimal value for the dual does not exceed v(N).2

Note that the primal linear program has an optimal solution. Then the conclusion follows

from the duality theorem of linear programming, which implies that both problems have

solutions and the optimal values of the two objective functions are identical.

[Easy proof of “only if” part. Let x be a core allocation and suppose that (λS)S∈2N is a

balanced collection of weights. Then∑
λSv(S) ≤ λSxS = xi λS = xi = v(N).

{S|S⊂N} {S

∑
|S⊂N}

∑
i∈N

∑
S3i

∑
i∈N

Hence v is balanced.] �

We next introduce a simpler condition, convexity, which guarantees a non-empty core.

Definition 4. A game with transferable payoffs v is convex 3 if for any two coalitions S and

T ,

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ).

The game v is superadditive if for any disjoint coalitions S and T ,

v(S ∪ T ) ≥ v(S) + v(T ).

The game v is monotone if for any coalitions S ⊂ T ,

v(S) ≤ v(T ).

Note that convexity implies superadditivity. If v is nonnegative, then superadditivity im-

plies monotonicity. Also, you can check that superadditivity implies cohesiveness. Convexity

owes its name to the following implication

(2.1) S ⊂ T & i ∈/ T =⇒ v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S),

which says that the marginal contribution of an individual i to a coalition is (weakly) in-

creasing as the coalition gets larger. To see this, consider the coalitions S ∪ {i} and T .

Indeed, by convexity,

v((S ∪ {i}) ∪ T ) + v((S ∪ {i}) ∩ T ) ≥ v(S ∪ {i}) + v(T ).

2See footnote 1.
3Convexity is sometimes referred to as as super-modularity.
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which can be rewritten as

v(T ∪ {i})− v(T ) ≥ v(S ∪ {i})− v(S).

Proposition 1. Any convex game with transferable payoffs has a non-empty core.

Proof. We show that the allocation x, with xi = v({1, . . . , i})− v({1, . . . , i− 1}), belongs to

the core. For all i1 < i2 < · · · < ik,

∑k k

xij =
∑

v({1, . . . , ij − 1, ij
=1 j=1

})− v({1, . . . , ij
j

− 1})

k

≥
∑

v( i1, . . . , ij−1, ij ) v( i1, . . . , ij−1 )
j=1

{ } − { }

= v({i1, i2, . . . , ik}),

where the inequality follows from {i1, . . . , ij 1} ⊂ {1, . . . , i 1− j − } and 2.1. �

It is easy to construct examples which illustrate that convexity is not a necessary condition

for the non-emptiness of the core (balancedness is).

3. Core Implementation (Perry and Reny 1994)

We restrict attention to games with transferable payoffs. An allocation which is not

in the core is regarded as unstable. For every such allocation, some players can form a

coalition and obtain an allocation that each strictly prefers. Almost sounds like a non-

cooperative game! But what’s the dynamics/timing of forming and breaking coalitions?

What sort of agreements are feasible/binding and what offers and counteroffers are allowed

following a history of outstanding proposals and binding agreements? Perry and Reny (1994)

provide a dynamic game in continuous time that implements (all and only) core allocations

in equilibrium. The game is designed to match the ideas behind the definition of the core.

The game starts at t = 0, at which time one player can choose to make a proposal or be

quiet. At any t > 0, a player can choose to make a proposal, accept the currently active

proposal, be quiet, or leave. A proposal, (x, S), suggests a coalition S and an allocation of

v(S) or less among the players in S (such proposals can be made by all players, including

ones outside S). A proposal (x, S) remains active until either it is accepted by all players
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in S, in which case it becomes binding, or another proposal is made, in which case the new

proposal becomes active and the old one disappears.

At any time there can thus be only one active proposal, but there can also be a number of

binding proposals that have been previously accepted. Whenever a binding proposal (x, S)

exists, any new proposal’s coalition has to be either disjoint from S or else fully include

it. If the latter happens, then if the new proposal is accepted, the original proposal (x, S)

disappears. Thus, at all times, the coalitions associated with currently binding proposals are

mutually disjoint.

Once a player accepts a proposal, he must remain quiet until it is binding or a new proposal

displaces it. After a proposal becomes binding, each player involved can leave and consume

or wait for better proposals. If one involved player decides to leave, all other players in the

coalition have to leave too.

Each player’s payoff is the amount allocated to him by the proposal that applies to him

when he leaves. There is no discounting.

A technical assumption on strategies is necessary. For every t and every history up to t,

players are not allowed to choose to make a “non-quiet” decision either “just before” or “right

after” t. Technically, for any history up to time t, there is an ε > 0 such that each player is

quiet in the intervals (t− ε, t) and (t, t+ ε). First, this ensures that given any history up to

time t, the strategies induce a unique continuation path (and well-defined payoffs). Second,

if we want to obtain only core outcomes in equilibrium, it is important that no player want

to take a “non-quiet” action as near as possible, yet before or after, any time t. If a player

had that option then there would not be any way for another player to convince him to stick

around with an appropriately timed blocking proposal.

The equilibrium concept is stationary subgame perfect equilibrium (SSPE), that is, an

SPE in stationary strategies. A strategy is stationary if the player’s action depends only on

the set of players who have not yet left, the currently active proposal with the set of players

who accepted it, and the currently binding proposals.

Theorem 2. Every SSPE outcome belongs to the core.

Proof. Suppose that x is an SSPE outcome that does not belong to the core. There exists a

proposal (y, S) such that yi > xi,∀i ∈ S. WLOG, assume S = {1, . . . , k}.
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Consider a time t history where nothing has happened except that (y, S) was proposed and

1, 2, . . . , k − 1 accepted. After this history, player k accepts before anything else happens.

Suppose not, let (z, T ) be the next proposal. It must be that in equilibrium k gets at least

yk > xk in the continuation game. By stationarity, it must be that in any subgame when only

(z, T ) is on the table (and there has been no acceptance), k obtains more than xk. Then

k can deviate from the putative equilibrium by proposing (z, T ) close to time 0, thereby

obtaining more than xk, a contradiction with the equilibrium requirements.

We prove by induction on l that after any history where nothing happened except that

1, 2, . . . , k− l accepted (y, S), player k− l+ 1 accepts. We showed that the base case is true.

If k− l+ 1 accepts, then by the induction hypothesis everyone accepts and k− l+ 1 obtains

yk l+1. If he does not accept, it must be that he can do even better and can obtain strictly−

more than yk l+1 making a proposal close to time 0.−

The induction hypothesis for l = k − 1 implies that if 1 offers (y, S) close to time 0 and

accepts it before any other action is taken, then he obtains a payoff y1 > x1. This contradicts

x being an SSPE outcome. �

The result above also holds for subgames in which a subset of the players left and con-

sumed. An outcome for the remaining players must be in the core of the cooperative game

they induce. One consequence of the result is that a necessary condition for an SSPE to

exist is that the game be totally balanced, i.e., its restriction to any coalition is balanced (or

any subgame has a non-empty core).

Theorem 3. If the game is totally balanced, then any element of its core can be supported

as an SSPE outcome.

The construction of an SSPE implementing any core point is involved, particularly off the

equilibrium path.

4. The Core and Competitive Equilibria

Consider an exchange economy with a set of consumers N and a set of goods G. A

consumption bundle is an element x ∈ RG
+. Consumer i enjoys utility ui(xi) from a bundle

x G
i. Each consumer starts with an endowment ωi ∈ R+.
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An allocation {xi}i N , with xi ∈ RG
+, is feasible if∈ i∈N xi = i∈N ωi, where ωi is consumer

i’s initial endowment of goods.

∑ ∑
Suppose that consumers interact in a market. A price is determined for every good and

the consumers take these prices as given. The price-taking assumption is reasonable for

markets with many participants and a high degree of competition among them.

Definition 5 (Competitive Equilibrium). A competitive equilibrium is a price vector (p∗g)g∈G

and a feasible allocation x∗ = (x∗i )i∈N such that

p∗ · xi ≤ p∗ · ωi =⇒ ui(x
∗
i ) ≥ ui(xi),

i.e. x∗i maximizes consumer i’s utility among all the consumption bundles that he can afford

given the prices and his initial endowment.

4.1. Aside on Existence. Does a competitive equilibrium exist? Yes it does, if one imposes

some regularity conditions on the utility functions. The standard proof involves Kakutani’s

fixed point theorem, which you are already familiar with. However, equilibrium existence is

not our focus here.

4.2. Competitive Equilibria and Cooperative Games. We can view the market as a

cooperative game. The actions available for any coalition of players S ⊆ N is the set of all

distributions of their total endowment
∑

i∈S ωi among themselves,

AS =

{
(xi)i∈S |

∑
xi =

i∈S

∑
ωi

i∈S

}
.

Of course, the payoff of consumer j ∈ S corresponding for the action (xi)i∈S is given by

uj(xj). Note that for most utility functions the resulting game does not have transferable

utility.

Example 5. Let G =
√{g}, N = {1, 2}, ω1 = ω2 = 1, and ui(xi) = xi. Then the set of

feasible payoffs (utilities) for the coalition {1, 2} is given by

{(u1, u2) | u2
1 + u2

2 = 2;u1, u2 ≥ 0}.
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Example 6. Consider a 2-consumer, 2-good economy. We can use the Edgeworth box to

illustrate allocations, competitive equilibria, and the core. See pp. 515-525 in Mas-Colell,

Whinston, and Green (posted).

We know how to define the core for any cooperative game, including the one derived

here. When can a coalition S block a feasible allocation x∗? It must be that the members

of S can redistribute their total endowment i themselv∈S ωi amongst es so as to make

each of them better off. Formally, there exists

∑
an allocation (xi)i∈S that is feasible for S

(
∑

i S xi =
∑

i S ωi), which every agent prefers to x∗ (ui(xi) > ui(x
∗

∈ ∈ i ), ∀i ∈ S).

Theorem 4. Any competitive equilibrium is in the core.

Proof. Let x∗ be a competitive equilibrium allocation corresponding to a price vector p.

Suppose that a coalition S can block x∗. Then there exists (xi)i∈S such that
∑

i∈S xi =∑
i∈S ωi and

ui(xi) > ui(x
∗
i ) ∀ i ∈ S

By definition of equilibrium the latter inequality implies that no i ∈ S can afford xi, so

p · xi > p · ωi ∀ i ∈ S

Adding up these conditions we obtain

p ·
∑

xi > p
i∈S

·
∑

ωi
i∈S

which contradicts i∈S xi = i∈S ωi. �

The converse of

∑
this theorem

∑
is not true. That is, not every point in the core is a compet-

itive equilibrium allocation. For instance, one can see an example in the Edgeworth box in

which the competitive equilibrium is unique but the core has a continuum of elements.

However, it is true that as we increase the market by replicating every consumer a large

number of times the non-equilibrium allocations gradually drop from the core, until in the

limit only equilibria survive. We will not prove this result.
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4.3. Aside on Equilibrium Tatonnement. Even in environments where an equilibrium

exists, the market may start at a price level which is not an equilibrium. What sort of price

dynamics should we expect then?

There are some intuitive dynamic principles—if the demand for a good is larger than the

supply, then one may expect the price of that good to increase.

There are, however, many possible disequilibium dynamics that one can consider, and it

is hard to argue that one is better than all others.

I will provide an example just to illustrate the ideas. Let z(p) be the excess demand

function at p. That is, we assume that the utility function ui is such that for any non-zero

price vector p and initial endowment ωi, player i has a unique optimal demand xi(p), where

xi(p) = arg max ui(xi)
xi·p≤ωi·p

The excess demand function for good g is then given by

zg(p) =
∑

(xig(p)− ωig)
i∈N

We say that good g is in excess demand (supply) if zg(p) > 0 (< 0).

Note that p∗ is an equilibrium price vector if and only if z(p∗) = 0. Suppose we start from

a disequilibrium price vector p. One price dynamic that adjusts prices upwards for goods in

excess demand and downwards for goods in excess supply is given by the following process

dpg
= cgzg(p)

dt

where dpg is the rate of change of the price of good g, and cg > 0 is a constant that determines
dt

the speed of convergence. This process is guaranteed to converge to an equilibrium if several

restrictions are imposed on the utility functions. The paper we discuss next applies the idea

of tatonnement in the context of the core.

5. Core Tatonnement

See slides.
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6. The Nash Bargaining Solution

We revisit the bargaining problem.4 The non-cooperative approach involves explicitly mod-

eling the bargaining process as an extensive form game. The Rubinstein (1982) alternating

offer bargaining model discussed earlier constitutes a prominent example. We next adopt the

axiomatic approach, which abstracts away from the details of the bargaining process. The

latter approach attempts to determine directly what “reasonable” or “natural” properties

the outcomes should satisfy. Nash (1950) provided a seminal contribution in this direction.

The immediate question is: What are “reasonable” axioms? Consider a situation where

two players must split $1. If no agreement is reached, then the players receive nothing. If

the preferences over monetary prizes are identical, then we might expect that each player

obtains 50 cents. This example reflects two desirable properties of an allocation: efficiency

and symmetry of the outcome for identical preferences.

A bargaining problem is a pair (U, d) where U ⊂ R2 and d ∈ U . We assume that U is

convex and compact and that there exists some u ∈ U such that u > d. We denote the set

of all possible bargaining problems by B. A bargaining solution is a function f : B → R2

with f(U, d) ∈ U .

Definition 6. The Nash (1950) bargaining solution fN is defined by

(6.1) {fN(U, d)} = arg max (u1 − d1)(u2 − d2).
u∈U,u≥d

Given the assumptions on (U, d), the solution to the optimization problem above exists

and is unique.

We will show that the Nash bargaining solution is the unique solution that satisfies the

following axioms.

Axiom 1 (Pareto Efficiency). A bargaining solution f is Pareto efficient if for any bargaining

problem (U, d), there does not exist (u1, u2) ∈ U such that u1 ≥ f1(U, d) and u2 ≥ f2(U, d),

with at least one strict inequality.

The motivation for this axiom is straightforward—an inefficient outcome is unlikely be-

cause it leaves space for renegotiation.

4This section builds on lecture notes by Asu Ozdaglar.
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Axiom 2 (Symmetry). A bargaining solution f is symmetric if for any symmetric bargaining

problem (U, d) ((u1, u2) ∈ U if and only if (u2, u1) ∈ U and d1 = d2), we have f1(U, d) =

f2(U, d).

The intuition for this axioms is that if players are indistinguishable, the agreement should

not discriminate between them.

Axiom 3 (Invariance to Linear Transformations). A bargaining solution f is invariant if

for any bargaining problem (U, d) and all αi ∈ (0,∞), βi ∈ R (i = 1, 2), if we consider the

bargaining problem (U ′, d′) with

U ′ = {(α1u1 + β1, α2u2 + β2) | (u1, u2) ∈ U}

d′ = (α1d1 + β1, α2d2 + β2)

then fi(U
′, d′) = αifi(U, d) + βi for i = 1, 2.

The motivation for this axiom is that the feasible payoffs are derived from an underlying

outcome space where agents have expected utility over lotteries. Linear transformations of

the utility functions lead to equivalent preferences over lotteries, and the bargaining outcome

should not be sensitive to the preference representation. The axiom effectively amounts to

a normalization of the bargaining problem.

Axiom 4 (Independence of Irrelevant Alternatives). A bargaining solution f is independent

if for any two bargaining problems (U, d) and (U ′, d) with U ′ ⊆ U and f(U, d) ∈ U ′, we have

f(U ′, d) = f(U, d).

Theorem 5. fN is the unique bargaining solution that satisfies the four axioms.

Proof. We first check that the Nash bargaining solution satisfies the axioms. We then show

that if a bargaining solution satisfies the axioms, then it must be identical to fN .

(1) Pareto efficiency: This follows immediately from the fact that the objective function

in 6.1 is increasing in u1 and u2.

(2) Symmetry: Assume that (U, d) is a symmetric bargaining problem. Then

(fN2 (U, d), fN1 (U, d)) ∈ U also solves the optimization problem 6.1. By the uniqueness

of the optimal solution, we must have fN1 (U, d) = fN2 (U, d).
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(3) Independence of irrelevant alternatives: Suppose that fN(U, d) ∈ U ′ ⊆ U . The

value of the objective function in 6.1 for (U ′, d) cannot exceed that for (U, d). Since

fN(U, d) ∈ U ′, the two values must be equal, and by the uniqueness of the optimal

solution for 6.1, we have fN(U, d) = fN(U ′, d).

(4) Invariance to linear transformations: Suppose that (U, d) and (U ′, d′) are related as

in the statement of the axiom. By definition, fN(U ′, d′) is an optimal solution of the

problem

max (u1
′ − α1d1 − β1)(u2

′ α2d2 β2)
{(u′ ,u′ )|u′ =α1u1+β1,u′ =α2u2+β2,(u U1 2 1 2 1,u2)∈ }

− −

It follows immediately that fNi (U ′, d′) = αif
N
i (U, d) + βi for i = 1, 2.

We next show that fN is the only bargaining solution that satisfies the axioms. We show

that for any f with this property, f(U, d) = fN(U, d) for all (U, d).

Fix a bargaining problem (U, d) and let z = fN(U, d). There exists αi > 0, βi such that

the transformation ui → αiui + βi takes di to 0 and zi to 1/2. Define

U ′ = {(α1u1 + β1, α2u2 + β2)|(u1, u2) ∈ U}.

Since both f and fN satisfy the invariance to linear transformations axiom, we have f(U, d) =

fN(U, d) if and only if f(U ′, 0) = fN(U ′, 0) = (1/2, 1/2). Hence, to establish the desired

claim, it is sufficient to prove that f(U ′, 0) = (1/2, 1/2).

Note that the line {(u1, u2)|u1 +u2 = 1} is tangent to the hyperbola {(u1, u2)|u1u2 = 1/4}

at the point (1/2, 1/2). Given that fN(U ′, 0) = (1/2, 1/2), we can argue that u1 +u2 ≤ 1 for

all u ∈ U ′. Assume there is a u ∈ U ′ with u1 + u2 > 1. Let t = (1− λ)(1/2, 1/2) + λ(u1, u2)

for some λ ∈ (0, 1). Since U ′ is convex, we have t ∈ U ′. We can choose λ sufficiently small

so that t1t2 > 1/4, a contradiction with the optimality of fN(U ′, 0) = (1/2, 1/2) in 6.1 for

the bargaining problem (U ′, 0).

Since U ′ is bounded, we can find a rectangle U ′′ with one side along the line u1 + u2 = 1,

symmetric with respect to the line u1 = u2, such that U ′ ⊆ U ′′ and (1/2, 1/2) is on the

boundary of U ′′.

Since f is efficient and symmetric, it must be that f(U ′′, 0) = (1/2, 1/2). We assumed

that f also satisfies the independence of irrelevant alternatives axiom. Then f(U ′′, 0) =

(1/2, 1/2) ∈ U ′ ⊆ U ′′ leads to f(U ′, 0) = (1/2, 1/2), which completes the proof. �
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7. Literature Discussion

• Nash (1953) demand game; Abreu and Pearce’s (2015) endogenous threats in a dy-

namic setting

• Nash bargaining solution used as reduced form for equilibrium analysis in the macro

and search literature (Diamond-Mortensen-Pissarides, Shimer-Smith)

• the Kalai-Smorodinsky (1975) solution

• axiomatic approach in matching theory

8. The Shapley Value

The core of a coalitional game may be empty or quite large, which compromises its role as

a predictive theory in certain situations. Ideally, we would like to develop a theory selecting

a unique outcome for every cooperative game. A value for cooperative games is a function

from the space of games to outcomes. Note that we allow the player set to vary and we

implicitly expect some “consistency” in the outcomes of “related” games. Here we restrict

attention to games with transferable utility and assume that the set of feasible outcomes for

a game (N, v) consists of all divisions of v(N) among the players in N .

Shapley (1953) proposed a solution that has many properties that are economically desir-

able and mathematically elegant.

Definition 7 (Shapley value). The Shapley value of a game with worth function v is given

by

ϕi(v) =
∑ |S|!(|N | − |S| − 1)!

S⊂N\{i}

(v(S )
N |!

∪ {i} − v(S)).
|

For an interpretation, suppose that all players are randomly ordered in a line, all orders

being equally likely. Then ϕi(v) represents the expected value of player i’s contribution to

the coalition formed by the players preceding him in line. The values across players sum to

v(N) because they do for every realization of the ordering.

Note that, by the proof of Proposition 1, for convex games, the Shapley value is a convex

combination of core allocations. Since the core is a convex set, the Shapley value of a convex

game belongs to its core.

What is special about the Shapley value? The following axioms describe some simple prop-

erties one might want a value to have, and it will turn out that they completely characterize
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the Shapley value. Before stating the axioms, we need to introduce some new definitions.

Player i is a dummy in v if v(S ∪ {i}) = v(S) for all S. Players i and j are interchangeable

in v if v(S ∪ {i}) = v(S ∪ {j}) for all S disjoint from {i, j}.

Axiom 5 (Symmetry). If i and j are interchangeable in v then ϕi(v) = ϕj(v).

Axiom 6 (Dummy Player). If i is a dummy in v then ϕi(v) = 0.

Axiom 7 (Additivity). For any two games v and w, we have ϕ(v + w) = ϕ(v) + ϕ(w).

The first two axioms are quite straightforward. The additivity axiom is mathematically

convenient, but difficult to motivate. The structure of v + w may induce behavior that

does not arise when v or w are considered separately.5 If we rescale additivity to require

that ϕ(pv + (1 − p)w) = pϕ(v) + (1 − p)ϕ(w), we can obtain an interpretation in terms of

bargaining over uncertain outcomes and independence of the bargaining process from the

timing of resolution of uncertainty.

Theorem 6. A value satisfies the three axioms above iff it is the Shapley value.

Proof. The “if” part is easy to check. The only step that is not immediate is showing that

ϕ satisfies the symmetry axiom. For that, suppose that i and j are interchangeable. Then∑ |S|!(|N | − |S| − 1)!
ϕi(v) =

S⊂N\{i}

(v(S
|N |!

∪ {i})− v(S))

=
S⊂

∑ |S|!(|N | − |S| − 1)!

N\{i,j}

(v(S i
N |!

∪ { })− v(S))
|

+
∑ (|S|+ 1)!(|N | − (|S|+ 1)− 1)!

S⊂N\{i,j}

(v(S ∪ {i, j})− v(S ∪ {j}))
|N |!

=
S⊂

∑ |S|!(|N | − |S| − 1)!

N\{i,j}

(v(S j
N |!

∪ { })− v(S))
|∑ (|S +

+
| 1)!(|N | − (|S|+ 1)− 1)!

S⊂N\{i,j}

(v(S
|N |!

∪ {i, j})− v(S ∪ {i}))

= ϕj(v).

5This criticism is similar to that of the independence of irrelevant alternatives axiom for the Nash bargaining
solution.
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We next prove the “only if” part. Suppose that ψ is a value satisfying the three axioms.

We need to argue that ψ = ϕ.

For any non-empty coalition T , define the payoff function vT with vT (S) = 1(0) if S ⊃ T

(S 6⊃ T ). Such games are sometimes referred to as carrier games. Fix a ∈ R. Note that

by the symmetry axiom, ψi(av
T ) = ψj(av

T ) for all i, j ∈ T . By the dummy player axiom,

ψi(av
T ) = 0 for all i ∈/ T . Hence ψi(av

T ) = a/|T |(0) for i ∈ T (i ∈/ T ), so ψ(avT ) = ϕ(avT ).

We show that the (2|N |−1) payoff functions vT span the linear space of all payoff functions.

If we view payoff functions as (2|N |− 1)-dimensional vectors, it is sufficient to show that the

vectors corresponding to the (2|N |−1) functions are linearly independent. For a contradiction,

suppose that
∑

T N α
TvT = 0 with not all α’s equal to zero. Let S be a set (one of the sets)⊂

with minimal cardinality satisfying αS 6= 0. Then
∑

T N α
TvT (S) = αS =6 0, a contradiction.⊂

Thus for any v there exist α’s s.t. v =
∑

αT T
T⊂N v . The additivity of ψ and ϕ immediately

imply that

ψ(v) = ψ

(∑
αTvT

)
=
∑

ψ(αTvT ) =
∑

ϕ(αTvT ) = ϕ (v
⊂N T⊂N T⊂

(
αTvT = ϕ ).

T N T

∑
⊂N

)
�

An alternative characterization of the Shapley value can be obtained in terms of the

following equity requirement—for any pair of players, the amounts that each player gains or

loses from the other’s withdrawal from the game are equal. The new characterization relates

the outcomes of games with different sets of players. For a coaltional game with transferable

payoffs (N, v), we denote by v|M its restriction to the players in M .

Definition 8 (Balanced contributions). A value ψ has balanced contributions if for every

coaltional game with transferable payoffs (N, v) we have

ψi(v|N)− ψi(v|N \ {j}) = ψj(v|N)− ψj(v|N \ {i}), ∀i, j ∈ N.

Note that for N = {i, j} the condition above becomes

ψi(v)− v({i}) = ψj(v)− v({j}),

which along with the constraint ψi(v)+ψj(v) = v({i, j}) leads to the Nash bargaining solution

for the game with bargaining set U = {(xi, xj)|xi +xj = v({i, j})} and disagreement payoffs
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given by d = (v({i}), v({j})). Hence, for 2-player games, the Shapley value coincides with

the Nash bargaining solution of the underlying bargaining problem. The next result shows

that we can view the Shapley value as an extension of the Nash bargaining solution to

multi-player games.

Theorem 7. The unique value that has balanced contributions is the Shapley value.

Proof. First, one can easily show that at most one value has balanced contributions. For a

contradiction, let ϕ′ and ϕ′′ be two different such values. Let (N, v) be a game with minimal

|N | for which the two values yield different outcomes. Then for all i, j ∈ N , ϕ′i(v|N \ {j}) =

ϕ′′i (v|N \ {j}) and ϕ′j(v|N \ {i}) = ϕ′′j (v|N \ {i}), along with the balancedness of ϕ′ and ϕ′′,

imply ϕ′i(v|N) − ϕ′′i (v|N) = ϕ′j(v|N) − ϕ′′j (v|N). Since i N(ϕ′i(v e∈ |N) − ϕ′′i (v|N)) = 0, w

immediately obtain ϕ′i(v|N)− ϕ′′i (v|N) = 0,∀i ∈ N , or ϕ

∑
′(v|N) = ϕ′′(v|N), a contradiction.

We next argue that the Shapley value has balanced contributions. The Shapley value ϕ is a

linear function of the game, so the set of games for which ϕ satisfies balanced contributions

is closed under taking linear combinations. Since any game can be written as a linear

combination of “carrier” games (from the proof of the previous result), it is sufficient to show

that carrier games satisfy balanced contributions. The latter assertion is checked without

difficulty. �

9. Values for Network Cooperation Structures

Under the Shapley value, the payoff of every player depends on the values of all coali-

tions. There are some situations where such symmetric treatment of coalitions may be

unrealistic. There may be some exogenous factors—e.g., location, social relationships, trade

agreements—that make some coalitions intrinsically more important/potent/feasible than

others. In such situations only a subset of coalitions can actually form and influence the

outcome.

Myerson (1977) looks at cooperation structures defined by networks. Fix N . A network

G (with vertex set N) consists of a set of unordered pairs of players, which we call links ; we

use the notation ij ∈ G to represent the fact that i and j are linked in G. It is assumed

that only coalitions that are internally connected can negotiate effectively. A coalition is
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(internally) connected if any two players in S are connected by a path of links in G among

players in S.

For each coalition S, let S|G denote the partition of S into sets of players that are connected

by G within S,

S|G = {{i|i and j are connected by G within S}|j ∈ S}.

Hence a coalition S is internally connected if S|G = {S}.

Consider a worth function v. How does the outcome of the game generated by v depend

on the network G? An allocation rule ψ specifies an allocation ψi(G) for each i ∈ N for all

networks G, with the property that

(9.1)
∑

ψi(G) = v(S),
i∈S

∀S ∈ N |G,∀G,

This condition asserts that if S is a connected component of G then the members of S ought

to share the total wealth v(S) available to them.

We say that an allocation rule ψ is fair if

(9.2) ψi(G)− ψi(G	 ij) = ψj(G)− ψj(G	 ij), ∀ij ∈ G,∀G.

(Here G 	 ij is the network remaining when ij is removed from G.) Fairness requires that

any two linked players benefit equally from their bilateral relationship.

We need one further definition to state the main result. What is the effective worth of a

coalition S that is internally disconnected in G? We denote by v|G the worth function given

by

(v|G)(S) =
T

∑
v(T ),

∈S|G

∀S ⊂ N.

This game can be interpreted as the result of altering the situation described by v to take

into account the communication constraints entailed by G.

Theorem 8 (Myerson 1977). For any worth function v, there is a unique fair allocation

rule. The unique fair allocation rule is defined by

ψ(G) = ϕ(v|G),∀G,

where ϕ is the Shapley value.
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Proof. We can establish that there is at most one fair allocation rule by an argument similar

to that of the previous proof. The minimal counterexample involves a network with the

smallest number of links rather than vertices.

We are only left to show that the Myerson value is a fair allocation rule. First, we need

to prove it is an allocation rule, that is, 9.1 holds. Note that

T |G = ∪S∈N |G(T ∩ S)|G,

hence

v|G =
∑

uS,
S∈N |G

where uS is defined by

uS(T ) =
R∈(

∑
v(R), T N.

T∩S)|G

∀ ⊂

All players outside S are dummies for uS, so∑
ϕi(u

S) = uS(N) = v(S)

∑i∈S
ϕ S
i(u ) = 0,

i∈T

∀T ∈ N |G, T 6= S

because ϕ satisfies the dummy player axiom. By the additivity of ϕ, we have

ϕ(v|G) =
S

∑
ϕ(uS).

∈N |G

Therefore, for any T ∈ N |G,∑
ϕi(v

i∈T

|G) =
S

∑
∈N |G

∑
ϕi(u

S) = uT (N) = v(T ).
i∈T

Second, we need to prove that the Myerson value is fair, that is, it satisfies 9.2. Define

the game w = v|G − v|(G 	 ij). Note that i and j are interchangeable in w. Indeed,

w(S ∪ {i}) = w(S ∪ {j}) = 0 for all S that do not contain i and j. Since ϕ satisfies

the symmetry axiom, it must be that ϕi(w) = ϕj(w). By the linearity of ϕ, we obtain

ϕi(v|G)− ϕi(v|(G	 ij)) = ϕj(v|G)− ϕj(v|(G	 ij)). �

As homework, you will be asked to show stability (no player has incentives to drop links)

for superadditive games and will look at an example.
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10. Non-Cooperative Implementation of the Shapley Value

Gul (1989) introduces a dynamic model of bargaining that, under a certain set of assump-

tions, implements the Shapley value (in the limit, as players become patient or offers can be

made frequently). Consider a game with transferable utility (N, v). Assume that v is strictly

superadditive,

L ∩M = ∅ ⇒ v(L) + v(M) < v(L ∪M) for all L,M ⊂ N.

We interpret v as follows. Each player owns a resource, and various combinations of these

resources produce payoffs according to the function v. When pooled together, the resources

of a coalition M produce a payoff flow with discounted present value of v(M) (corresponding

to a constant utility flow of (1− δ)v(M) per period). At any point in time an player controls

a bundle of resources he bought off other players (who sold everything and left the market),

which he may choose to sell to another player who is still active in the market.

In every period t = 0, 1, . . . two active players are randomly (with equal probability)

matched. One of the two matched players is randomly (with equal probability) chosen

to make an offer for the entire bundle of the other player. If the offer is accepted, the

responder leaves the market (becomes inactive) and the proposer inherits his bundle. The

game proceeds without change to the next period in case of rejection. The game is over

when only one active player is left. Players have a common discount factor δ. The utility of

player i is given by

∞

U i =
∑

[(1− δ)v(M i
t )

t=0

− rit]δt,

where M i
t denotes the coalition of players whose resources i holds at time t and rit is the

payment i makes at t. The equilibrium notion is stationary subgame perfect equilibrium

(SSPE). At any point in time each player’s behavior depends only on the distribution of

resources in the market and the current offer.

A state q = (M1,M2, . . . ,Mk) refers to the situation in which, after various rounds of

trading, there are k players left in the game and each player (who is still in the game) i owns

resources Mk(i) ⊂ ¯N . Q is the set of all possible states (partitions of N). N ∈ Q denotes

¯the finest partition of N , that is, N = ({1}, . . . , {n}). For all L,M ∈ q, let R(q, L,M) ∈ Q
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denote the partition obtained from q by replacing the elements L and M by L ∪M . That

is, R(q, L,M) = (q\{L,M}) ∪ {L ∪M}.

Fix q = (M1,M2, . . . ,Mk). Define the generalized Shapley value for the partition q as

follows

s!(k s 1)!
S(Mm, q) =

−

{i1,i2,...,is}⊆{

∑ −

1,2,...,k}\{m}

(v(Mi
k! 1 ∪Mi2 ∪ . . .Mis ∪Mm)

− v(Mi1 ∪Mi2 ∪ . . . ∪Mis)).

¯Observe that S(i, N) is the Shapley value of i ∈ N in the game (N, v). In general S(M, q) is

the Shapley value of the player who owns the resource bundle M in a game in which initial

endowments are distributed according to q.

Theorem 9. The payoffs of any family of equilibria in which every match leads to trade

converges to the Shapley value as δ → 1.

The proof of the theorem follows from the following two lemmas.

Lemma 1. Assume that, after various rounds of trade, the economy has reached a situa-

tion in which only two players remain. The continuation game is a two-player bargaining

game with randomly selected proposer. If at this stage q = (M,N\M), then the expected

continuation payoffs of the two remaining players are

v(N) N
U(M, q)

− v( \M) + v(M)
= = S(M, q)

2

v(N)− v(M) + v(N\M)
U(N\M, q) = = S(N

2
\M, q)

Proof. Refer to the “representative” of M as player 1 and to that of N\M as player 2. By

stationarity, player 1 (2) always makes the same offer a (b) to 2 (1). Under the assumption

that the equilibrium leads to immediate agreement, we obtain the following equations for

equilibrium payoffs

1
u1 =

b
(v(N)

2
− a) + .

2

a
u2 =

1
+

2
(v(N)

2
− b).
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If player 2 refuses the offer, then he enjoys the payoff flow (1−δ)v(N\M) and continuation

payoff δu2. In equilibrium, player 1 makes the offer that makes 2 exactly indifferent between

accepting and rejecting,

a = (1− δ)v(N\M) + δu2.

Similarly,

b = (1− δ)v(M) + δu1.

Substituting the values of a and b in the formulae for u1 and u2, we find

v(N) v(N M) + v(M)
u1 =

− \
2

v(N)
u2 =

− v(M) + v(N\M)
.

2

�

Lemma 2. Suppose that for any i, j ∈ N , equilibrium payoffs in a game in which players i

¯ ¯ ¯and j traded satisfy limδ 1 U(M,R(N, i, j)) = S(M,R(N, i, j)) for all M ∈ R(N, i, j). Then→

¯ ¯limδ 1 U(i, N) = S(i, N).→

¯Proof. Taking into account all possible matches in the first period of the game, U(i, N) is

given by the following expectation

2¯U(i, N) =
1

n(n− 1)

[∑
j 6=i

¯U
2

[
(1− δ)v({i}) + δ (i, N)+

(1− δ)v({ ¯ ¯i, j}) + δU(ij, R(N, i, j))− (1− δ)v(j)− δU(j,N)
]
+

∑ (
(1− ¯δ)v({i

{j,k}⊂N\{i

}) + δU(i, R(N, j, k))
}

) ]

The first term captures offers accepted from other players j, the second the gains from trade

when i is the proposer, and the third term continuation payoffs when other pairs trade.

¯Then (U(i, N))i N is the solution of a linear system of equations with coefficients that∈

are linear functions of δ. Using Cramer’s rule, each payoff can be expressed as a fraction of

polynomials in δ. One can easily show that if |N | ≥ 3 then the system in non-singular, and
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hence the solution converges as δ → 1 to the solution of the limit system,

1¯U(i, N) =

∑ ¯ ¯) j))− ¯ ¯[U(i, N + U(ij, R(N, i, U(j,N)] + 2 U(i, R(N, j, k)) .
n(n− 1)

j 6=i {j,k}⊂N\{i}

∑
¯ ¯ ¯We have to show that U(ij, R(N, i, j)) = S(ij, R(N, i, j)) for all i 6= j ∈ N , then U(i, N) =



¯S(i, N), which is equivalent to showing that the Shapley value satisfies

1¯S(i, N) =

∑ ¯ ¯ ¯ ¯[S(i, N) + S(ij, R(N, i, j)) S(j,N)] + 2 S(i, R(N, j, k)) .
n(n− 1)

j=6 i

−
{j,k}⊂

∑
N\{i}



In order to prove this last equation, we can again use carrier games and the linearity of the



Shapley value. A clean argument, showing that the desired formula leads to an alternative

characterization of the Shapley value, can be found in Haviv (1995). The Shapley value

satisfies a consistency property with respect to amalgamations of pairs of players. �

Lemma 2 states that if after one transaction occurs, the equilibrium is such that for δ close

to 1 it yields an expected payoff equal to his Shapley value for every remaining player (relative

to a new distribution of resources), then for δ close enough 1 the equilibrium will yield each

player expected payoff equal to his Shapley value in the original game before any transaction

takes place. But this is equivalent to saying that, if the equilibrium yields expected payoffs

according to the Shapley values in all n − 1 player games, then the equilibrium will yield

payoffs according to the Shapley value in all n player games.
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