14.13 Lecture 9

Xavier Gabaix

March 4, 2004

What about non-Gumbel noise?

• De finition. A distribution is in the domain of attraction of the Gumbel if and only if there exists constants A_n,B_n such that for any x

$$
\lim_{n \to \infty} P\left(\max_{i=1,\dots,n} \varepsilon_i \le A_n + B_n x\right) = e^{-e^{-x}}.
$$

when ε_i are iid draws from the given distribution.

- Fact 1. The following distributions are in the domain of attraction of ^a Gamble: Gaussian, exponential, Gumbel, lognormal, Weibull.
- Fact 2. Bounded distributions are not in this domain.

 $\bullet\,$ Fact 3 Power law distributions $(P(\epsilon > x) \sim x^{-\zeta}$ for some $\zeta > 0)$ are not in this domain.

• Lemma 1. For distributions in the domain of attraction of the Gumbel $F\left(x\right)=P\left(\varepsilon < x\right)$ take $\bar{F}(x)=1$ $F - F(x) = P\left(\varepsilon \geq x\right),$ and $f = F'.$ Then A_n, B_n are given by

$$
\bar{F}\left(A_n\right)=\frac{1}{n} \newline B_n=\frac{1}{nf\left(A_n\right)}
$$

indeed $E[\overline{F}(M_n)]=\frac{1}{n+1}.$ In general, order $\epsilon_{1;n}\geq \epsilon_{2;n}\geq ... \geq \epsilon_{n;n},$ then $F(\epsilon_{k;n})\simeq 1$ — $\,k$ $\, n \,$

 \bullet Lemma 2

$$
\lim_{n \to \infty} P\left(\max_{i=1,...n} \varepsilon_i + q_i \le A_n + B_n y + q_n^*\right) = e^{-e^{-y}}
$$

with

$$
e^{q_n^*/B_n}=\frac{1}{n}\sum e^{q_i/B_n}
$$

· Proposition.

$$
D_1 = P\left(q_1 - p_1 + \sigma \varepsilon_1 > \max_{i=2,\ldots,n} q_i - p_i + \sigma \varepsilon_i\right)
$$

For $n \to \infty$, $\lim D_1/\bar{D}_1 = 1$ where

$$
\bar{D}_1 = \frac{e^{\frac{q_1 - p_1}{B_n \sigma}}}{\sum_{i=1}^n e^{\frac{q_i - p_i}{B_n \sigma}}} \simeq D_1.
$$

 \bullet Example 1. Exponential distribution $f\left(x\right)=e^{-\left(x+1\right)}$ for $x>-1$ and equals 0 for $x\leq -1.$ then, for $x>-1$

$$
\bar{F}(x) = P(\varepsilon > x) = \int_x^{\infty} e^{-(x+1)} dy
$$

= $\left[-e^{-(x+1)} \right]_x^{\infty} = e^{-(x+1)} = f(x).$

Thus

$$
\bar{F}\left(A_{n}\right) =\frac{1}{n},
$$

and

$$
A_n = -1 + \ln n
$$

and

$$
B_n=\frac{1}{nf\left(A_n\right)}=1
$$

• Example 2. Gaussian.
$$
f(x) = \sqrt{F(x)} = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{s^2}{2}} ds
$$
. For large x ,
the cumulative $\overline{F}(x) \sim \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi x}}$. Result

$$
A_n \sim \sqrt{2 \ln n}
$$

$$
B_n \sim \frac{1}{\sqrt{2 \ln n}}
$$

Optimal prices satisfy

$$
\max_{i} \frac{(p_i - c_i) e^{\frac{q_i - p_i}{B_n \sigma}}}{\sum e^{\frac{q_j - p_j}{B_n \sigma}}} = \max (p_i - c_i) \, \bar{D}_1 = \pi_i
$$

• Same as for Gumbel with
$$
\sigma' = B_n \sigma
$$
.

• Thus

$$
p_i-c_i=B_n\sigma
$$

— Gumbel

$$
p_i - c_i = \sigma
$$

— Exponential noise

$$
p_i-c_i=\sigma
$$

— Gaussian

$$
p_i - c_i = \frac{1}{\sqrt{2 \ln n}} \sigma
$$

and competition almost does not decrease markup (beyond markup when there are already some 20 firms).

— note that in the Cournot competition

$$
p_i - c_i \sim \frac{1}{n}
$$

- Example. Mutual funds market.
	- Around 10,000 funds. Fidelity alone has 600 funds.
	- $-$ Lots of fairly high fees. Entry fee 1-2%, every year management fee of 1-2% and if you quit exit fee of 1-2%. On the top of that the manager pays various fees to various brokers, that is passed on to consumers.
	- The puzzle how all those markups are possible with so many funds?
	- Part of the reason for that many funds is that Fidelity and others have incubator funds. With large probability some of them will beat the market ten years in ^a row, and then they can propose them to unsophisticated consumers.