6.207/14.15: Networks
Lecture 11: Giant Component, Generalized Random
Graphs




Qutline

o Emergence and size of a giant component in Erdos-Renyi graphs
o An application: contagion and diffusion

o Generalized random graph models

o Graphs with prescribed degrees — configuration model

o Emergence of a giant component in the configuration model

Reading:
o Newman, Sections 12.1-12.5, 12.7-12.8.
o Newman, Sections 13.2 (skip 13.2.2), 13.3,13.4.
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Giant Component

o We have shown that when p(n) < @, the Erdds-Renyi graph is
disconnected with high probability.

o In cases for which the network is not connected, the component
structure is of interest.

o We have argued that in this regime the expected number of isolated
nodes goes to infinity. This suggests that the Erdos-Renyi graph
should have an arbitrarily large number of components.

o We will next argue that the threshold p(n) = % plays an important
role in the component structure of the graph.

— For A < 1, all components of the graph are “small”.
— For A > 1, the graph has a (unique) giant component, i.e., a
component that contains a constant fraction of the nodes.
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Emergence of the Giant Component—1

o We will analyze the component structure in the vicinity of p(n) = 2 using a

branching process approximation.

o We assume p(n) = 2.

A

F .

o B(n, %) binomial random variable with parameters n,

o Consider starting from node 1 and exploring the graph.

(a) Erdos-Renyi graph process. (b) Branching Process Approx.



Networks: Lecture 11

Emergence of the Giant Component—2

o We first consider the case when A < 1.

o Let ZkG and ZE denote the number of individuals at stage k for the graph
process and the branching process approximation, respectively.

o In view of the “overcounting” feature of the branching process, we have

Ze <78  forall k.

o From branching process analysis (see Lecture 3 notes), we have
E[Z5] = AX,
(since the expected number of children is given by n X % = A).
o Let S denote the number of nodes in the Erdos-Renyi graph connected to
node 1, i.e., the size of the component which contains node 1.

o Then, we have

E[S1] =Y E[zZ] <Y E[ZP]=) Af = %
k k k 1—A
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Emergence of the Giant Component—3

o The preceding result suggests that for A < 1, the sizes of the components
are “small”.

Theorem

Let p(n) = 2 and assume that A < 1. For all (sufficiently large) a > 0, we have

IP( max |S;| > alog(n)) — 0 asn— oo.
1<i<n

Here |S;| is the size of the component that contains node i.

o This result states that for A < 1, all components are small [in particular they
are of size O(log(n))].

o Proof is beyond the scope of this course.



Networks: Lecture 11

Emergence of the Giant Component—4

o We next consider the case when A > 1.
o We claim that Z& ~ ZP when A* < O(y/n).
o The expected number of conflicts at stage k + 1 satisfies
)\2

IE[number of conflicts at stage k + 1] ~ np’E[Z2] = n—IE[Zk]
n2

~ -
~ -
~

A /\

o We assume for large n that Z, is a Poisson random variable and therefore
var(Z,) = AX. This implies that

E[Z2] = var(Zy) + E[Zk]? = A + A2k = 22K

o Combining the preceding two relations, we see that the conflicts become
non-negligible only after AX ~ \/n.
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Emergence of the Giant Component—b

o Hence, there exists some ¢ > 0 such that
IP(there exists a component with size > c4/n nodes) — 1 as
n — o0,

o Moreover, between any two components of size y/n, the probability of
having a link is given by

A
IP(there exists at least one link) =1— (1—=)"~1—e*,

n

l.e., it is a positive constant independent of n.

o This argument can be used to see that components of size < /n
connect to each other, forming a connected component of size gn for
some g > 0, a giant component.
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Size of the Giant Component

o Form an Erdos-Renyi graph with n — 1 nodes with link formation probability
p(n) =12, 1>1.

o Now add a last node, and connect this node to the rest of the graph with
probability p(n).

o Let g be the fraction of nodes in the giant component of the n — 1 node
network. We can assume that for large n, g is also the fraction of nodes in
the giant component of the n-node network.

o The probability that node n is not in the giant component is given by
IP(node n not in the giant component) =1 — g = p.

o The probability that node n is not in the giant component is equal to the
probability that none of its neighbors is in the giant component, yielding

n—1
0=Y pp*=®(p).
k=0

o Like before, this equation has a fixed point p* € (0,1).



An Application: Contagion and Diffusion

o Consider a society of n individuals.
o A randomly chosen individual is infected with a contagious virus.

o Assume that the network of interactions in the society is described by an
Erdos-Renyi graph with link probability p.

o Assume that any individual is immune with a probability 7.

o We would like to find the expected size of the epidemic as a fraction of the
whole society.

o The spread of disease can be modeled as:

o Generate an Erdos-Renyi graph with n nodes and link probability p.
o Delete 7tn of the nodes uniformly at random.
o ldentify the component that the initially infected individual lies in.

o We can equivalently examine a graph with (1 — 71)n nodes with link
probability p.



An Application: Contagion and Diffusion

o We consider 3 cases:
o p(l—rm)n<1:

| 1—
[E[size of epidemic as a fraction of the society| < og(( . 7)) ~ 0.

o 1< p(l—m)n<log((l—rm)n):

[E[size of epidemic as a fraction of the society|

_ 991 —m)n+ (1 —q)log((1 —7)n))

2
~ 1—
- q°(1— ),

where g denotes the fraction of nodes in the giant component of the graph
with (1 — 77)n nodes, i.e., g=1— e 91-7)np,

o p> s

[E[size of epidemic as a fraction of the society] = (1 — 7).
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Configuration Model—1

o We have seen that the Erdos-Renyi model has a Poisson degree distribution,
which falls off very fast.

o Our next goal is to generate random networks with a “given degree
distribution”.

o One of the most widely method used for this purpose is the configuration
model developed by Bender and Canfield in 1978.

o The configuration model is specified in terms of a degree sequence, i.e., for
a network of n nodes, we have a desired degree sequence (kq, ..., ky), which
specifies the degree k; of node /, for i =1,...,n.

— Given a degree distribution py, we can generate the degree sequence
for n nodes by sampling the degrees independently from the
distribution py, i.e., k;j ~ pg.

— A law of large numbers argument establishes that the frequency of
degrees plgn) converges to the degree distribution px as n goes to
infinity.
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Configuration Model—2

o Given the degree k; for node i for all i = 1,..., n, we create a random
network with these degrees as follows:

o We give each node i, k; “stubs” sticking out of it, which are ends of
edges-to-be (there are a total of }_; ki = 2m stubs, where m is the number
of edges).

o We choose two stubs uniformly at random and create an edge between the
corresponding nodes.

o We choose another pair from the remaining 2m — 2 stubs, connect those
and continue until all the stubs are used up.

o Remarks:
— This process generates each possible matching of stubs with equal
probability.
— The sum of degrees needs to be even (or else an entry will be left out
at the end).

— It is possible to have self-edges and multiedges.
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Distribution of the Degree of a Neighboring Node—1

o We will use a branching process approximation to study the giant
component in the configuration model.

o For this we need to understand the distribution of the degree of a
neighboring node, i.e., given some node / with degree d;, consider a
neighbor j. What is the degree distribution of node ;7

/
1 —t # of children = kx — 1
k1 ~ px« \/\\/—\\
tCJ \4
N
ko ~ Pk

o Naive intuition: Same distribution as node |.

o Example: Consider a graph with 4 nodes and links {1,2}, {2,3}, {3,4}.
— We have p; = p» = 1/2. Pick a link at random, then randomly pick
an end of it, there is a 2/3 chance of finding a node with degree 2 and
1/3 chance of finding a node with degree 1.
— Higher degree nodes are involved in a higher percentage of the links.
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Distribution of the Degree of a Neighboring Node—2

o The degree of a node we reach by following a randomly chosen edge is not
given by py.

o In the configuration model, an edge emerging from a node has equal chance
of terminating at any of the stubs.

o Since there are 2m stubs in total, the probability of this edge ending at any
particular node of degree k is k/2m.

o Since the total number of nodes with degree k is given by npy, the
probability of the edge attaching to a node with degree k is given by

K Kpk
~ NPk — 7+
(k)

where (k) is the expected degree in the network and the equality follows
from the relation 2m = n{k).
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Distribution of the Degree of a Neighboring Node—3

o Intuitively, there are k edges that arrive at a node of degree k, we are k
times as likely to arrive at that node than another node that has degree 1.

o Thus, the degree distribution of the neighboring node p; is proportional to

kP kpk  kpk

Pk~ o (k)
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Emergence of a Giant Component in the Configuration
Model—1

o We will use a branching process approximation to analyze the emergence of
the giant component.

— We ignore self loops (can be shown to have small probability) and
conflicts (do not matter until the graph grows to a substantial size).

o Note that we have

u = IE[number of children] = E[k — 1]
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Emergence of a Giant Component in the Configuration
Model—2

o Using the branching process analysis, this yields the following threshold for
the emergence of the giant component:

Subcritical: u < 1, or equivalently

(k%)
=<2 & (k(k—2))<O0.
(k)

Supercritical: u > 1, or equivalently

(k(k —2)) > 0.

o In the case of an Erdds-Renyi graph, we have (k%) = (k) + (k)?, and so the
giant component emerges when

(k)2 > (k) < (k) >1.

o Since (k) = (n—1)p in the Erdds-Renyi graph, this indeed yields the
threshold function t(n) = + for the emergence of the giant component.
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