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Agenda 

Recap of last time 

Mixed strategies and mixed strategy equilibrium 

Existence of Nash Equilibria 

Extensive form games and subgame perfection 

Reading: Osborne chapters 4-6 
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Recap 
Rational choice: 
• Agents described by preferences, can represent as utility 
function 

• With uncertainty, maximize expected utility 

Dominant and dominated strategies 
• Intuitive game solutions 
• Can’t always get a unique prediction 

Pure strategy Nash Equilibrium 
• Everyone plays a best response 
• Doesn’t always exist... 
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Nonexistence 

Recall the matching pennies game: 

Heads Tails 

Heads (−1, 1) (1, −1) 

Tails (1,-1) (−1, 1) 

No pure strategy Nash Equilibrium 

How would you play? 
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Nonexistence 

Alternative interpretation: Penalty Kicker and Goalie 

Kicker / Goalie Left Right 

Left (−1, 1) (1, −1) 

Right (1,-1) (−1, 1) 

Is it a good strategy for the kicker to always kick to the left side 
of the net? 

Empirical evidence suggests that most penalty kickers 
“randomize” 
• Mixed strategies 
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Mixed Strategies 
Let �i denote the set of all lotteries over pure strategies in Si 

• In our example, a mixed strategy is a probability of kicking (or 
diving) left 

Write ̇ i 2 �i for the strategy of i 

QWrite ̇  2 � = i2N �i for a strategy profile 
• Implicitly assume players randomize independently 
• ̇−i 2 �−i denotes strategies of other players 

Payo˙ is expected utility: Z 
ui(˙) = ui(s)d˙(s) 

S 
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Mixed Strategy Nash Equilibrium 

Definition 
A mixed strategy profile ̇ � is a Nash Equilibrium if for each 
player i and all ̇ i 2 �i 

ui(˙� i , ̇ � −i) � ui(˙i, ̇
� 
−i) 

The strategy ̇ i 
� is a best response to ̇ −� i 

• Best response to correct conjecture 

Space of lotteries is large, how do we tell we have an equilibrium? 
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Mixed Strategy Nash Equilibrium 

Proposition 
In a normal form game, the profile ̇ � 2 � is a Nash Equilibrium 
if and only if for each player i, every pure strategy in the support 
of ̇ � i is a best response to ̇ � −i. 

We only need to check pure strategy deviations 

Proof idea: If we put positive probability on a strategy that is not 
a best response, shifting that probability to a best response 
strictly increases utility. 
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Mixed Strategy Nash Equilibrium 

Consequence: every action in support of i’s equilibrium mixed 
strategy yields same expected payo˙ 

Extends to infinite games 

Matching pennies: unique mixed Nash equilibrium, players put 
probability 1

2 on heads 

Heads Tails 

Heads (−1, 1) (1, −1) 

Tails (1,-1) (−1, 1) 
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Example: Work or Shirk 

Recall the partnership game: 

Work Shirk 

Work (2, 2) (−1, 1) 

Shirk (1,-1) (0, 0) 

Two pure strategy equilibria 
• Are there mixed equilibria? 

Yes! Both randomize with probability 1
2 

• Expected payo˙ of 1
2 
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Interpretation of Mixed Equilibria 

Deliberate choice to randomize 
• Recall our penalty kicker 
• Bluÿng in poker 

Concern: indi˙erence between strategies in support 
• Continuum of best responses 

Steady state of a learning process 

Distribution of outcomes in a perturbed game with pure strategy 
best responses 
• “Purification” 
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Nash’s Theorem 

Theorem 
Every finite game has a mixed strategy Nash equilibrium. 

Implication: games like matching pennies always have mixed 
equilibria 

Why do we care? 
• Without existence, studying properties of equilibria is diÿcult 
(maybe meaningless) 

• Knowing existence, we can just try to find the equilibria 
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Tools: Weierstrass’s Theorem 

Theorem (Weierstrass) 
Let A be a nonempty compact subset of a finite dimensional 
Euclidean space, and let f : A ! R be a continuous function. 
The function f attains a maximum and a minimum in A. 

Recall definition of compactness: every sequence has a 
convergent subsequence 
• Continuity ensures sup and inf are contained in the image f(A) 

Evan Sadler Networks Introduction 13/39 



Tools: Kakutani’s Fixed Point Theorem 

Theorem (Kakutani) 
Let f : A � A be a correspondence, i.e. x 2 A =) f(x) ˆ A, 
satisfying: 
• A is a non-empty compact and convex subset of a finite 
dimensional Euclidean space 

• f(x) is non-empty for all x 2 A 
• f(x) is convex valued 
• f(x) has a closed graph, i.e. (xn, yn) ! (x, y) with 
yn 2 f(xn) implies y 2 f(x) 

Then f has a fixed point: there exists x 2 A such that x 2 f(x) 
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Definitions 
A set in Euclidean space is compact i˙ it is bounded and closed 
• Every infinite sequence has a convergent subsequence 

A set S is convex if for any x, y 2 S and any � 2 [0, 1], we have 
�x + (1 − �)y 2 S. 
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Kakutani’s Fixed Point Theorem, Illustration 
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Proof of Nash’s Theorem 

Recall ̇ � is a mixed strategy Nash Equilibrium if for every player 
i and every ̇ i 2 �i, 

ui(˙�, ˙� ) � ui(˙i, ˙
� )i −i −i 

Define best response correspondence Bi : �−i � �i for player i: 

Bi(˙−i) = {˙0 2 �i : ui(˙0, ˙−i) � ui(ˆ̇i, ˙−i), 8 ̂̇i 2 �i}i i 

Set of best response correspondences 

B(˙) = {Bi(˙−i)}i2N 
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Proof, continued 

We apply Kakutani’s fixed point theorem to the correspondence 
B : � � � 

Need to show: 
• � is compact, convex, and non-empty 
• B(˙) is non-empty 
• B(˙) is convex-valued 
• B(˙) has a closed graph 

Q� = i2N �i is compact, convex, and non-empty by definition 
• �i is a simplex of dimension |Si| − 1 

Evan Sadler Networks Introduction 18/39 



Proof, continued 
B(˙) is non-empty by Weierstrass’s theorem 
• �i is non-empty and compact, so ui attains its maximum for 
each i 

B(˙) is convex-valued, meaning Bi(˙−i) is convex for each i 
• Recall proposition on pure strategy deviations 
• If ̇ i 

0 and ̇ i 
00 both maximize ui, any mixture does as well 

For any ̇̂ i, we have 

ui (�˙0 + (1 − �)˙00, ˙−i) = �ui(˙0, ˙−i) + (1 − �)ui(˙00, ˙−i)i i i i 

� �ui(ˆ̇i, ˙−i) + (1 − �)ui(ˆ̇i, ˙−i) 
= ui(ˆ̇i, ˙−i) 
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Proof, continued 
B(˙) has a closed graph 
• Suppose not 
• Then, there exists (˙n , ˙̂n) ! (˙, ̇̂ ) with ̇̂ n 2 B(˙n), but 
˙̂ 2/ B(˙) 

• That is, there exists i such that ̇̂ i 2/ Bi(˙−i) 
• Since ̇̂  2/ Bi(˙−i), there exists ̇ i 

0 2 �i and � > 0 such that 

ui(˙i 
0, ˙−i) > ui(ˆ̇i, ˙−i) + 3� 

• By continuity, for suÿciently large n we have 

ui(˙i 
0, ˙− 

n
i) � ui(˙i 

0, ˙−i) − � 
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Proof, continued 

Combining the last two inequalities, we have 

ui(˙0, ˙n ) > ui(ˆ̇i, ˙−i) + 2� � ui(ˆ̇n, ˙n ) + �i −i i −i 

This contradicts assumption that ̇̂ i
n 2 Bi(˙− n

i) 
• We conclude that B has a closed graph 

By definition, ̇ � is a mixed strategy equilibrium if ̇ � 2 B(˙�) 

Equilibrium existence follows from Kakutani’s theorem 
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Equilibrium Existence in Infinite Games 

A similar theorem gives existence of pure strategy equilibria in 
infinite games 

Theorem (Debreu, Glicksburg, Fan) 
Consider an infinite normal form game (N, {Si}i2N , {ui}i2N ) 
such that for each i 2 N : 
• Si is compact and convex 
• ui(si, s−i) is continuous in s−i 

• ui(si, s−i) is continuous and concave in si 

Then a pure strategy Nash Equilibrium exists. 

Proof left as exercise 
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Definitions 
Suppose S is a convex set. Then a function f : S ! R is 
concave if for any x, y 2 S and � 2 [0, 1] we have 

f (�x + (1 − �)y) � �f(x) + (1 − �)f(y) 
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More Existence Questions 
Can we relax concavity? 

Example: 
• Two players simultaneously pick locations s1, s2 2 R2 on the 
unit circle 

• Player 1’s payo˙ strictly increasing function of distance 
between players 

• Player 2’s payo˙ strictly decreasing function of distance 
between players 

No pure strategy Nash Equilibrium 
• Can express strategies as a compact convex set, but payo˙s 
are not concave 

There are mixed strategy equilibria... 
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A Stronger Theorem 

Theorem (Glicksberg) 
Consider an infinite normal form game such that 
• Si is compact and convex for each i 
• ui(si, s−i) is continuous in both arguments 
Then a mixed strategy Nash Equilibrium exists. 

Proof is beyond scope of this class 
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Extensive Form Games 

Up to now, we have ignored dynamics 

Extensive form games capture strategic situations with multiple 
actions in sequence 
• For now, focus on games with observable actions 

Represent extensive form using a game tree 
• Keep track of possible histories 
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Definitions 
Extensive form game is a collection (N, H, Z, {Ah} i2N , {ui}i2N )i 

h2H 

• Set of players N 
• Set of non-terminal histories H 
• Set of terminal histories Z 
• Actions Ah

i for each player i at each non-terminal history h 
• Payo˙ function ui giving payo˙ to i at each terminal history 
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Strategies in Extensive Form Games 

A strategy for player i is a map si giving an action for each 
non-terminal history h 2 H 
• Strategy is a complete contingent plan 

In example, player 1 has two strategies, H and T 

How many does player 2 have? 
• Four: HH, HT , TH, TT 
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Strategies in Extensive Form Games 

Can use strategies to express extensive form game in normal form 

• Action in normal form game is choice of a complete contingent 
plan 

Normal form of two-stage matching pennies: 

Player 1 / Player 2 HH HT T H T T 

Heads 

Tails 

(−1, 1) 

(1, −1) 

(−1, 1) 

(−1, 1) 

(1, −1) 

(1, −1) 

(1, −1) 

(−1, 1) 
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Sidebar: Normal Form to Extensive Form 
Recall the original matching pennies example: players choose 
heads/tails simultaneously 

Can represent using a game tree by adding information sets 
• Player cannot distinguish two decision nodes in same 
information set 
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Example: Entry Deterrence 

Normal form representation: 

Entrant / Incumbent Accommodate Fight 

In 

Out 

(2, 1) 

(1, 2) 

(0, 0) 

(1, 2) 

Two pure Nash equilibria: (In, A) and (Out, F ). 
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Are Both Equilibria Reasonable? 

Equilibrium (Out, F ) sustained by noncredible threat 
• After observing entry, best response is to accommodate 

Refinement by “subgame perfection” 
• Strategy must be optimal going forward from any history 
• Solve game via backward induction 

Need to formally define a subgame 
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Subgame Perfect Equilibrium 

Recall an extensive form game is expressed as a game tree 
• Let VG denote the set of nodes 

An information set X � VG is a successor of node y (written 
X ̃  y) if we can reach X through y 

Definition 
A subgame Gx of G is the set of nodes V x 

G ˆ VG that are 
successors of some node x 2 V x 

G and not of any z /2 V x 
G 
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Subgame Perfect Equilibrium 

A restriction of a strategy profile ̇  to the subgame Gx, written 
˙|Gx is the profile implied by ̇  in the subgame Gx 

Definition 
A strategy profile ̇ � is a subgame perfect Nash equilibrium of G 
if for any subgame Gx of G, ̇ � |Gx 

is a Nash equilibrium of Gx. 

Rules out non-credible threats 

How to find subgame perfect equilibria? 
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Backward Induction 

Backward induction: start from the last subgames, find Nash 
equilibria of those, then work backwards towards the beginning of 
the game 
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Existence of Subgame Perfect Equilibria 

Theorem 
Every finite perfect information extensive form game G has a 
pure strategy SPE 

Note: perfect information means all information sets contain 
exactly one node 

Theorem 
Every finite extensive form game G has a SPE 

Follow’s from Nash’s theorem 
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Value of Commitment 

What if the incumbent firm could commit to fight? 

Could adjust the game tree to allow this 
• Now the unique SPE is (Out, F ) 
• Incumbent is better o˙ 

Consider a dynamic version of Cournot competition 
• Firm 1 commits to a quantity of output first 
• Only after this does firm 2 choose a quantity 
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Stackleberg Competition 

Recall the two firms will face a market price p = 1 − q1 − q2 

• Firm i earns qi(p − c) 

Backward induction: solve firm 2’s problem 
= 1−q1−c• First order condition implies q2 2 as before 

Firm 1 chooses q1 to maximize � � �1 − q1 − c 
�1 − q1 − c 

q1(p − c) = q1 1 − q1 − − c = q12 2 

= 1−cgiving q1 2 . 
• Total output is higher in the Stackleberg equilibrium (why?) 
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Recap 

Nash equilibrium will be our workhorse solution concept 
• Can essentially always guarantee existence of a (mixed 
strategy) equilibrium 

Will employ refinements, especially in dynamic games, where 
appropriate 

Next time: a network application of basic game theory 
• Traÿc routing 
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