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Agenda

Recap of last time
Mixed strategies and mixed strategy equilibrium
Existence of Nash Equilibria

Extensive form games and subgame perfection

Reading: Osborne chapters 4-6
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Recap

Rational choice:

e Agents described by preferences, can represent as utility
function

e With uncertainty, maximize expected utility

Dominant and dominated strategies
e |ntuitive game solutions

e Can't always get a unique prediction

Pure strategy Nash Equilibrium
e Everyone plays a best response

e Doesn't always exist...
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Nonexistence

Recall the matching pennies game:

Heads Tails

Heads | (—1,1) | (1,—1)

Tails | (1,-1) | (—1,1)

No pure strategy Nash Equilibrium

How would you play?
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Nonexistence

Alternative interpretation: Penalty Kicker and Goalie

Kicker / Goalie | Left Right
Left (—1,1) | (1,-1)
Right (1-1) | (=1,1)

Is it a good strategy for the kicker to always kick to the left side
of the net?

Empirical evidence suggests that most penalty kickers
“randomize”

e Mixed strategies
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Mixed Strategies

Let >; denote the set of all lotteries over pure strategies in .5;

* In our example, a mixed strategy is a probability of kicking (or
diving) left

Write o, € X; for the strategy of ¢

Write 0 € X = [[,cn 2 for a strategy profile
e |Implicitly assume players randomize independently

e o_; € X, denotes strategies of other players

Payoff is expected utility:

w(0) = /S w;(8)do(s)
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Mixed Strategy Nash Equilibrium

Definition
A mixed strategy profile o* is a Nash Equilibrium if for each
player ¢ and all o; € X,

ui(o;,0°;) > ui(o,07;)

—1

The strategy o is a best response to o™,

e Best response to correct conjecture

Space of lotteries is large, how do we tell we have an equilibrium?
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Mixed Strategy Nash Equilibrium

Proposition
In a normal form game, the profile c* € X. is a Nash Equilibrium

if and only if for each player i, every pure strategy in the support
of o} is a best response to o* ;.

We only need to check pure strategy deviations

Proof idea: If we put positive probability on a strategy that is not
a best response, shifting that probability to a best response
strictly increases utility.
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Mixed Strategy Nash Equilibrium

Consequence: every action in support of ¢'s equilibrium mixed
strategy yields same expected payoff

Extends to infinite games

Matching pennies: unique mixed Nash equilibrium, players put
probability % on heads

Heads Tails

Heads | (—1,1) | (1,—1)

T alS % (1,511 YA (— 1531 )
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Example: Work or Shirk

Recall the partnership game:

Work | Shirk
Work | (2,2) | (—1,1)
Shirk | (1,-1) | (0,0)

Two pure strategy equilibria

e Are there mixed equilibria?

Yes! Both randomize with probability ;
e Expected payoff of 3

Evan Sadler Networks Introduction 10/39




Interpretation of Mixed Equilibria

Deliberate choice to randomize
e Recall our penalty kicker

e Bluffing in poker

Concern: indifference between strategies in support

e Continuum of best responses

Steady state of a learning process

Distribution of outcomes in a perturbed game with pure strategy
best responses

e “Purification”
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Nash's Theorem

Theorem

Every finite game has a mixed strategy Nash equilibrium.

Implication: games like matching pennies always have mixed
equilibria

Why do we care?

e Without existence, studying properties of equilibria is difficult
(maybe meaningless)

e Knowing existence, we can just try to find the equilibria
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Tools: Weierstrass's Theorem

Theorem (Weierstrass)

Let A be a nonempty compact subset of a finite dimensional
Euclidean space, and let f : A — R be a continuous function.
The function f attains a maximum and a minimum in A.

Recall definition of compactness: every sequence has a
convergent subsequence

e Continuity ensures sup and inf are contained in the image f(A)
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Tools: Kakutani's Fixed Point Theorem

Theorem (Kakutani)
Let f : A= A be a correspondence, i.e. 1 € A = f(x) C A,
satisfying:
A is a non-empty compact and convex subset of a finite
dimensional Euclidean space
f(x) is non-empty for all x € A
f(x) is convex valued
f(x) has a closed graph, i.e. (x,,y,) — (x,y) with
Yn € f(x,) implies y € f(x)
Then f has a fixed point: there exists x € A such that x € f(x)
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Definitions

A set in Euclidean space is compact iff it is bounded and closed

e Every infinite sequence has a convergent subsequence

A set S is convex if for any z,y € S and any A € [0, 1], we have
Ar+ (1 — XNy € S.

3
_|_
_ |
) =
\ =:-I‘--.

i
ﬂﬂx

convex set not a convex set
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Kakutani's Fixed Point Theorem, lllustration

——————————————————————————————————————————————————————

[f(a) does not have a

‘x] is not convex-valued
/@) closed graph
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Proof of Nash's Theorem

Recall o* is a mixed strategy Nash Equilibrium if for every player
v and every o; € X,
ui(07,0°;) 2 ui(0s,07)

—1

Define best response correspondence B; : X_; = X; for player :

Bz’(o_—i) = {0'7{ - Zz . ’LLZ'(O',E,O'_Z') Z ui(&i,a_z-), V&Z & Zz}

Set of best response correspondences

Biog= { Bi(0s) fich
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Proof, continued

We apply Kakutani's fixed point theorem to the correspondence
B\ T D,

Need to show:

e > is compact, convex, and non-empty
e B(o) is non-empty

e B(o) is convex-valued

e B(o) has a closed graph

>) = [L;en 22 is compact, convex, and non-empty by definition

e 3}, is a simplex of dimension |S;| — 1
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Proof, continued

B(o) is non-empty by Weierstrass's theorem

e >, is non-empty and compact, so u; attains its maximum for
each 1

B(o) is convex-valued, meaning B;(0_;) is convex for each i
e Recall proposition on pure strategy deviations

e If ¢/ and o both maximize u;, any mixture does as well

For any &;, we have

u; B B B \oll, o =
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Proof, continued

B(o) has a closed graph

e Suppose not

e Then, there exists (¢",6") — (0,6) with 6" € B(c"™), but
o ¢ B(o)

e That is, there exists ¢ such that 6; ¢ B;(0_;)

e Since 6 ¢ B;(0_;), there exists g} € >; and € > 0 such that

ui(oh, o) > ui(64,0_;) + 3e

e By continuity, for sufficiently large n we have

u’i(o-lelv O-T—lz) = Ui(O'g, U—i) L €
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Proof, continued

Combining the last two inequalities, we have
ui(o;, ™) > u; (65, 0_;) + 2 > u; (67, 0",) + €

This contradicts assumption that " € B;(c",)

e We conclude that B has a closed graph

*

By definition, ¢* is a mixed strategy equilibrium if o* € B(c*)

Equilibrium existence follows from Kakutani's theorem
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Equilibrium Existence in Infinite Games

A similar theorem gives existence of pure strategy equilibria in
infinite games

Theorem (Debreu, Glicksburg, Fan)

Consider an infinite normal form game (N, {S; }ien, {w;i bien)
such that for each 1 € N:

S; Is compact and convex

u;(S;,S_;) is continuous in s_;

u;(S;, S_;) is continuous and concave in s;

Then a pure strategy Nash Equilibrium exists.

Proof left as exercise
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Definitions

Suppose S is a convex set. Then a function f : S — R is
concave if for any z,y € S and A € |0, 1] we have

fz+(1=Ny) 2 Af(z) + (1 - A)f(y)

, flAz+ (1= Ay

)

not a concave function

concave function

Evan Sadler Networks Introduction 23/39




More Existence Questions

Can we relax concavity?

Example:

e Two players simultaneously pick locations s;, sy € R? on the
unit circle

e Player 1's payoff strictly increasing function of distance
between players

e Player 2's payoff strictly decreasing function of distance
between players

No pure strategy Nash Equilibrium

e Can express strategies as a compact convex set, but payoffs
are not concave

There are mixed strategy equilibria...
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A Stronger Theorem

Theorem (Glicksberg)

Consider an infinite normal form game such that

S; Is compact and convex for each 1

u;(si, S_;) is continuous in both arguments

Then a mixed strategy Nash Equilibrium exists.

Proof is beyond scope of this class
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Extensive Form Games

Up to now, we have ignored dynamics

Extensive form games capture strategic situations with multiple
actions In sequence

e For now, focus on games with observable actions

Represent extensive form using a game tree

e Keep track of possible histories
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Definitions

Extensive form game is a collection (N, H, Z, {A?}ieN, {u; }ien)
heH

e Set of players N

e Set of non-terminal histories H

e Set of terminal histories 7

e Actions A” for each player ¢ at each non-terminal history h
e Payoff function u; giving payoff to ¢ at each terminal history

Player 1

(_lrl} (1.r_1} l:]-f_l:] l:_lr]-:]

Evan Sadler Networks Introduction 27/39




Strategies in Extensive Form Games

A strategy for player 7 is a map s; giving an action for each
non-terminal history h € H

e Strategy is a complete contingent plan

In example, player 1 has two strategies, H and T

How many does player 2 have?
e Four: HH, HT', TH, TT

Evan Sadler
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Strategies in Extensive Form Games

Can use strategies to express extensive form game in normal form

e Action in normal form game is choice of a complete contingent
plan

Normal form of two-stage matching pennies:

Player 1 / Player 2 | HH HT TH TT
Heads (—1,1) | (=1,1) | (1,=1) | (1,-1)
Tails (1,—-1) | (=1,1) | (1,=1) | (—=1,1)
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Sidebar: Normal Form to Extensive Form

Recall the original matching pennies example: players choose
heads/tails simultaneously

Can represent using a game tree by adding information sets

e Player cannot distinguish two decision nodes in same
information set

{-1,]_} {]-r']-::l {]-r_]-::l l[']-.']-} [_]-r]-:l [1."1] “-."]-:I {-l.l}
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Example: Entry Deterrence

Entrant

Out

Incumbent

A (1,2)

(2,1) (0,0)

Normal form representation:

Entrant / Incumbent | Accommodate | Fight
In (2,\) (0,0)
Out (1,2) (1,2)

Two pure Nash equilibria: (In, A) and (Out, F).

Evan Sadler Networks Introduction 31/39




Are Both Equilibria Reasonable?

Equilibrium (Out, F') sustained by noncredible threat

e After observing entry, best response is to accommodate

Refinement by “subgame perfection”
e Strategy must be optimal going forward from any history

e Solve game via backward induction

Need to formally define a subgame
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Subgame Perfect Equilibrium

Recall an extensive form game is expressed as a game tree
o Let Vi denote the set of nodes

An information set X C V(; is a successor of node y (written
X > y) if we can reach X through y

Definition

A subgame G, of GG is the set of nodes V& C Vi that are
successors of some node z € V& and not of any 2z ¢ V&
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Subgame Perfect Equilibrium

A restriction of a strategy profile o to the subgame GG, written
0|c, IS the profile implied by o in the subgame G,

Definition

A strategy profile o* is a subgame perfect Nash equilibrium of G
if for any subgame G, of G, 0)q, is a Nash equilibrium I NEM

Rules out non-credible threats

How to find subgame perfect equilibria?
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Backward Induction

Backward induction: start from the last subgames, find Nash
equilibria of those, then work backwards towards the beginning of
the game

Entrant

Ot
Incumbent

A (1,2)

(2,1) (0,0)
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Existence of Subgame Perfect Equilibria

Theorem

Every finite perfect information extensive form game GG has a
pure strategy SPE

Note: perfect information means all information sets contain
exactly one node

Theorem

Every finite extensive form game G has a SPE

Follow's from Nash's theorem
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Value of Commitment

What if the incumbent firm could commit to fight?

Could adjust the game tree to allow this
e Now the unique SPE is (Out, F')

e |[ncumbent is better off

Consider a dynamic version of Cournot competition
e Firm 1 commits to a quantity of output first

e Only after this does firm 2 choose a quantity
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Stackleberg Competition

Recall the two firms will face a market price p =1 — ¢ — ¢

e Firm ¢ earns ¢;(p — ¢)

Backward induction: solve firm 2's problem

1—qg1—c

I— as before

e First order condition implies ¢ =

Firm 1 chooses ¢; to maximize

li=lag"— @ l—q1—c
C.ll(p—C):Ql(l—(]l— > —0)291( )

giving q; = %

e Total output is higher in the Stackleberg equilibrium (why?)
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Recap

Nash equilibrium will be our workhorse solution concept

e Can essentially always guarantee existence of a (mixed
strategy) equilibrium

Will employ refinements, especially in dynamic games, where
appropriate

Next time: a network application of basic game theory

e Traffic routing
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