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Agenda

Local network effects

No textbook covers this material yet, three good papers:

e Bramoullé, Kranton, and D’Amours (2014), “Strategic
Interaction and Networks,” American Economic Review

e Ballester, Calvo-Armengol, and Zenou (2006), “Who's Who in
Networks. Wanted: The Key Player,” Econometrica

e Candogan, Bimpikis, and Ozdaglar (2012), “Optimal Pricing
in Networks with Externalities,” Operations Research
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Local Network Effects

So far, focus on homogeneous externalities

Spillovers often depend on individual identities and relationships
e Searching for job opportunities

e Academic peer effects

e |earning spillovers

e Crime

e Oligopoly

Can study network games to gain insight into how relationship
patterns affect effort incentives
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General Framework

Set of players N = {1,2,...,n}

Each player chooses an action x; > 0

e Action profile x = (1, 9, ..., Tp)

Players in an undirected interaction network

e Adjacency matrix G with entries g;; € {0, 1}

Player i's payoff U;(x;, z_;, 9, G)

e Parameter o > 0 captures role of interactions
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Strategic Substitutes
Define the payoffs as

Ui(zi, z_408G )= b (% g 529@%‘) it
JFt

where b; is differentiable, strictly increasing, and concave in z;
e Assume b;(c0) < k; < b(0)
e Strategic substitutes

First order condition:
VEal
Write T; for solution to b(x) = k;

Best reply is ; = max {O,TZ- — 0D iz gzjl’j}
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Example: A Cournot Game

Set of V firms produce heterogeneous goods
e Edge between two firms indicates products are substitutes

e Parameter o0 indicates degree of substitutability
Firm ¢ faces inverse demand
pi(d) =a— (Qi O g,-jqj)
JFi
where a > 0

If marginal cost is ¢, profit is

U:(q,9,G)= g (a n (C]i o 529@7%‘)) — g

JF1
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Example: A Cournot Game

First order condition:

oU,
P CL(%ﬂLCngijq]‘)%—CO,
1 j#i

implying
O 0 Yl ;4
2

4

Note: we recover the classic model by taking 0 = ¢;; = 1 for all j
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Strategic Substitutes

If x; > 0, say ¢ is active, else inactive

For simplicitly, assume function is such that 7; = 1
® T, = max O, 1 — 5237% gijxj

e Brouwer's fixed point theorem guarantees equilibrium existence

e Set of active agents A
e Active agent action profile x4
e Links between active agents G 4

e Links connecting active agents to inactive ones Gn_4 4
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Equilibrium Structure

Proposition

In any Nash equilibrium, the action profile of active agents x 4
satisfies:

([ -+ 5GA)XA =1

0GN_aaxa > 1

First condition ensures active players are best-responding
e Compute equilibrium actions as x4 = (I +6G4)7 ' -1

e Follows from first order condition

Second condition ensures inactive players are best-responding
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Computing Equilibria

How can we find the equilibria?

e Guess and check

Fix a subset of the players S C N and compute

Xg — ([ -+ 5G5)_11

Then check whether 5GN—S,SXS > 1

If yes, then we have found an equilibrium with S as the set of
active players
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Example: Computing Equilibria

Consider four players in a line graph:

(01 0 0
. _ 1 010
0 1 0 1
\0 0 1 0/
Suppose all players are active:
(1-282 -5 4§  —o )
(1 +6G)" = 1 60— 1—-62 =6 2
OBl N B2 N 162 |36

L N Wik 03— & 1207
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Example: Computing Equilibria

(1_5—-52) e

SHE 1 1-20+06°[ 1 1—90
([+5G) 1—54—352+1 1_25+53 _1—|—5—52 1_5
R0’ | L

Actions must be non-negative, so we have an equilibrium with all
players active if only if 0 < 1.
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Example: Computing Equilibria

Suppose one of the center players is inactive (S = {1, 3,4})

Only two linked active players (one end is isolated), gives

0 1
Gg =
1 0
1 -1 0
I+6Gg) " =
(hat o s I —
As long as 0 # 1, we have
1 o— 1 L
I ] = = |
(I +6Gs) e T N
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Example: Computing Equilibria

The isolated active player 1 chooses r1 = 1, so

1

L T
X5 115 > 0

1
\7+5
Need to check for the inactive player 2 that 0G'y_g 525 > 1:

@i\

1
oG-ssas =0(1 1 0) | 5| =0 (14 135)
\ 5+
Profile is an equilibrium if 1 > 0 > —\/52—1
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The Potential Function

Define the potential

®(x,0,G) =x"1— %XT(I + 0G)x

n

1 1. <=
=% (:13Z — 5:13?) — 55 > gijzix;.
i=1

1,J=1

First order conditions for maximizing ® are same as first order
condition for each player’'s optimization

e Need 1 — L 5237% 9ij T = 0

This is a potential game
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Uniqueness of Equilibrium

Theorem (Bramoullé et al., 2014)
The set of Nash equilibria given G and 0 is the set of local

maxima and saddle points of the potential ®(x,d,G)
If | Amin(G)| < 5, there is a unique Nash equilibrium.

The KKT conditions for maximizing ® are exactly the best
response conditions for each player

® Foreachi, weneed 0 =1—2; — 0> ;4 giT; + 1

e Complementary slackness implies 1; > 0 only if x; =0

If ® is strictly concave, the KKT conditions are necessary and
sufficient, so there is a unique solution
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Uniqueness Continued

We have V?® = —(I 4+ 6G), so P is strictly concave iff I + 0G is
positive definite

I + G is positive definite iff A\,,;, (1 + 6G) > 0

Amin({ + 0G) > 0 iff Xuin(G) <

|
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Uniqueness Continued

Proposition

For any graph G, if |A\pin(G)| > 5, there exists at least one Nash
equilibrium with inactive agents.

In the line graph with four players, we have

NS 9
|>‘min(G)| " =3
2 Vh—1

Recall the equilibrium with an inactive center player required

TE Al 1 9
5> @—<
& 2 B Vi 1
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Comparative Statics

How do equilibria change when we add links or increase 07
Partial answer...

Theorem

Consider the highest aggregate play equilibrium x*(d, G) for ¢
and G. Suppose &' > 6 and G' O . Then for any equilibrium
vector x(0', G'), we have

> wi(d),G") < )y xi(6,G)
= i=1

Adding links or increasing substitutability typically reduces
equilibrium play
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Strategic Complements

Strategic substitutes capture examples like public goods provision
and Cournot competition

In other cases, actions are complements
e |earning spillovers

e Bank runs

e Criminal activity

Suppose payoffs are

1
Ui(ﬂfi, X_i, 5, G) =T; — 533? + 529@333233]

JFt
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Strategic Complements

First order conditions imply

JF#1

Theorem

If Mpae(G) < %, there is a unique Nash equilibrium with actions

x = (I —6G)'1.

The vector (I — 6G)'1 = K(4, G) gives the Katz-Bonacich
centralities of the players

If Anaz(G) > 3, there is no equilibrium
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Key Players

Each player contributes to aggregate activity in proportion to
centrality

gl0,8) - _AK(6E)
ZJ 1 3(5 G) - Z?ﬂ ’Cj(5a G)

Suppose this is a model of criminal activity, and we want to
reduce aggregate crime by targeting key individuals

e Who do we target?

Write G~ for the network without player ¢, solve

\

min « Zx;(& GRA= 182, ..., n
i7" )

We call the solution * the key player
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Key Players

Theorem
If Moz < % the key player i* has the highest intercentrality

Ki(6, G)’

c; (0, G)mu((s, G

where M (6, G) = (I — 6G)~*
Intercentrality is different from Katz-Bonacich centrality
Intuitively, need to capture not only a player’s activity level

(proportional to Katz-Bonacich centrality), but the player's
contribution to others’ centralities as well
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Key Players: Proof
When M (4, G) is well defined, we have

m;i(8, G)Ymar (8, G) = m(6, G) (myi(6,G) — mj(6,G™))

> K5(6,G) = Y K(6,G7)

Evan Sadler

— K:(6,G) + Y K;(8,G) — K;(5,G™)
j#i
= IC;(0,G) + ;; (mjk(5a G) — my(9, G_i)>
m;; (0, G)m;r (9, G)
M (0, G)

Ki(6,G) +ZZ

J#1 k=1

JFt
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Pricing-Consumption Model

Now suppose we want to price a good that entails local
externalities

e How should we set prices?

e How much is information about the network worth?

Set of agents N = {1,2,...,n}, weighted network G
* Interpret g;; as influence of j on ¢
® Assume g;; > 0, g;; =0

e Do not need gij = Gji

Monopolist produces a good, chooses vector p of prices

e Perfect price discrimination: charge p; to agent ¢
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Pricing-Consumption Model
Agent's utility:

2
Wi(Ziy Ty Pi) = Qi — by + T Y GigTi — Pilks
i

e Direct benefit a;z; — bil’?

e Social benefit

e Price

Two stage game
e Monopolist chooses prices p to maximize > . p;x; — cx;
e Agents choose usages x; to maximize utilities u;(x, p;)

e | ook at subgame perfect equilibria
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Consumption Equilibrium

Work backwards, taking prices as given

Define diagonal matrix A with A;; = 2b;, let S C N be a subset
of the agents

Theorem

Assume 2b; > > icn g for all i. For any p, there is a unique

consumption equilibrium of the form

xs = (Ag — Gg)" (ag — pg)

XN—_—§ — 0

for some subset S C N
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Optimal Pricing

Theorem

Assume a; > c for all 1 € N. The optimal prices are given by

G+GT>1a—cl

p=a—(A—G) (A—

2 2

Note, under optimal prices, all agents purchase a postiive amount
Immediate corollary: If G is symmetric, optimal prices are

_a+cl
st oh

p

independent of the network structure
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Optimal Pricing

Recall the Katz-Bonacich centralities (G, a) = (I — aG)™'1

Theorem

Assume consumers are symmetric, a; = a and b; = b for all 1.
The optimal prices are

— 1 —
b LY > 2

T
— 1
a -+ c a C{GIC<G+G

Base price plus markup (influence by others) minus discount
(influence to others)
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Importance of Knowing the Network

Compare optimal prices ignoring the network to optimal prices
with perfect information

o [Iy profit assuming g;; =0

e Il optimal profit with network information

Theorem

Assume players are symmetric, and define M = A — GG and
M= MM T+MTM~'  Than

4

From corollary, we know if G = G*, then II, = IIy; value of
network information increases with asymmetry of interactions
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