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Agenda 

Local network e˙ects 

No textbook covers this material yet, three good papers: 
• Bramoullé, Kranton, and D’Amours (2014), “Strategic

Interaction and Networks,” American Economic Review
• Ballester, Calvó-Armengol, and Zenou (2006), “Who’s Who in

Networks. Wanted: The Key Player,” Econometrica
• Candogan, Bimpikis, and Ozdaglar (2012), “Optimal Pricing

in Networks with Externalities,” Operations Research
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Local Network E˙ects 

So far, focus on homogeneous externalities 

Spillovers often depend on individual identities and relationships 
• Searching for job opportunities
• Academic peer e˙ects
• Learning spillovers
• Crime
• Oligopoly

Can study network games to gain insight into how relationship 
patterns a˙ect e˙ort incentives 
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General Framework 

Set of players N = {1, 2, ..., n}

Each player chooses an action xi � 0 
• Action profile x = (x1, x2, ..., xn)

Players in an undirected interaction network 
• Adjacency matrix G with entries gij 2 {0, 1}

Player i’s payo˙ Ui(xi, x−i, �, G) 
• Parameter � � 0 captures role of interactions 
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Strategic Substitutes 
Define the payo˙s as 

where bi is di˙erentiable, strictly increasing, and concave in xi

• Assume b0 i(1) < ki < b0 i(0)
• Strategic substitutes

First order condition:

Write xi for solution to b0 i(x) = kin oPBest reply is xi = max 0, xi − � j=6 i gijxj
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Ui(xi, x−i, δ, G) = bi

xi + δ
∑
j 6=i

gijxj

− kixi

b′i

xi + δ
∑
j 6=i

gijxj

− ki ≤ 0



Example: A Cournot Game 
Set of N firms produce heterogeneous goods 
• Edge between two firms indicates products are substitutes
• Parameter � indicates degree of substitutability

Firm i faces inverse demand
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pi(q) = a−

qi + δ
∑
j 6=i

gijqj


where a > 0

If marginal cost is c, profit is

Ui(q, δ, G) = qi

a−
qi + δ

∑
j 6=i

gijqj

− cqi



Example: A Cournot Game 

First order condition: 

Note: we recover the classic model by taking � = gij = 1 for all j
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∂Ui
∂qi

= a−

qi + δ
∑
j 6=i

gijqj

− qi − c = 0,

implying
qi =

a− c− δ∑j 6=i gijqj
2



Strategic Substitutes 

If xi > 0, say i is active, else inactive 

For simplicitly, assume function  is such that xi = 1 

• Brouwer’s fixed point theorem guarantees equilibrium existence

• Set of active agents A
• Active agent action profile xA

• Links between active agents GA

• Links connecting active agents to inactive ones GN−A,A
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• xi = max 0, 1− δ∑j 6=i gijxj



Equilibrium Structure 

Proposition 
In any Nash equilibrium, the action profile of active agents xA

satisfies: 
(I + �GA)xA = 1

�GN−A,AxA � 1

First condition ensures active players are best-responding 
• Compute equilibrium actions as xA = (I + �GA)−1 · 1
• Follows from first order condition

Second condition ensures inactive players are best-responding
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Computing Equilibria 

How can we find the equilibria? 
• Guess and check

Fix a subset of the players S � N and compute 

xS = (I + �GS)−11

Then check whether �GN−S,SxS � 1

If yes, then we have found an equilibrium with S as the set of 
active players 
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Example: Computing Equilibria 
Consider four players in a line graph: 
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G =



0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


Suppose all players are active:

(I + δG)−1 = 1
δ4 − 3δ2 + 1



1− 2δ2 δ3 − δ δ2

1− δ2 −δ

−δ3

δ2δ3 − δ

δ2 −δ 1− δ2 δ3 − δ

−δ3 δ2 δ3 − δ 1− 2δ2





Example: Computing Equilibria 

Actions must be non-negative, so we have an equilibrium with all 
players active if only if � < 1. 
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(I+δG)−11 = 1
δ4 − 3δ2 + 1



1− δ − δ2

1− 2δ + δ3

1− 2δ + δ3

1− δ − δ2


= 1

1 + δ − δ2



1

1− δ

1− δ

1





Example: Computing Equilibria 
Suppose one of the center players is inactive (S = {1, 3, 4}) 

Only two linked active players (one end is isolated), gives 

Evan Sadler Networks Introduction 13/30

GS =

0 1

1 0



(I + δGS)−1 = 2
1

δ − 1

−1 δ

δ −1


As long as δ 6= 1, we have

(I + δGS)−11 = 2
1

δ − 1

δ − 1

δ − 1

 =

 1
1+δ

1
1+δ





Example: Computing Equilibria 
The isolated active player 1 chooses x1 = 1, so 

Profile is an equilibrium if 1 > � � 
p

5
2
−1
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xS =


1
1

1+δ
1

1+δ

 ≥ 0

Need to check for the inactive player 2 that δGN−S,SxS ≥ 1:

δGN−S,SxS = δ
(

1 1 0
)


1
1

1+δ
1

1+δ

 = δ
(

1 + 1
1 + δ

)



The Potential Function 

Define the potential 

First order conditions for maximizing � are same as first order 
condition for each player’s optimization 

This is a potential game 
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Φ (x, δ, G) = xT1− 1
2xT (I + δG)x

n∑
=

i=1

( 1
xi − 2xi

2
)
− 1

2δ
n∑

i,j=1
gijxixj.

• Need 1− xi − δ
∑
j 6=i gijxj ≤ 0



Uniqueness of Equilibrium 

Theorem (Bramoullé et al., 2014) 
The set of Nash equilibria given G and � is the set of local 
maxima and saddle points of the potential �(x, �, G) 
If |�min(G)| < 1 

�
, there is a unique Nash equilibrium. 

The KKT conditions for maximizing � are exactly the best 
response conditions for each player 

If � is strictly concave, the KKT conditions are necessary and 
suÿcient, so there is a unique solution 
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• For each i, we need 0 = 1− xi − δ
∑
j 6=i gijxj + µi

• Complementary slackness implies µi > 0 only if xi = 0



Uniqueness Continued 

We have r2� = −(I + �G), so � is strictly concave i˙ I + �G is 
positive definite 

I + �G is positive definite i˙ �min(I + �G) > 0 

�min(I + �G) > 0 i˙ �min(G) < 1
�
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Uniqueness Continued 

Proposition 
For any graph G, if |�min(G)| � 1 

�
, there exists at least one Nash 

equilibrium with inactive agents. 

In the line graph with four players, we have 
p
5 + 1 2 |�min(G)| = = p2 5− 1 

Recall the equilibrium with an inactive center player required 
p
5− 1 1 2 

� � () � p2 � 5− 1 
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Comparative Statics 

How do equilibria change when we add links or increase �? 
Partial answer... 

Theorem 
Consider the highest aggregate play equilibrium x�(�, G) for � 
and G. Suppose �0 � � and G0 � G. Then for any equilibrium 
vector x(�0, G0), we have 

Adding links or increasing substitutability typically reduces 
equilibrium play 
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n∑
i=1

n∑
xi(δ′, G′) ≤

i=1
xi
∗(δ,G)



Strategic Complements 

Strategic substitutes capture examples like public goods provision 
and Cournot competition 

In other cases, actions are complements 
• Learning spillovers
• Bank runs
• Criminal activity

Suppose payo˙s are 
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Ui(xi, x−i, δ, G) = xi −
1
2 =
xi

2 + δ
j 6

∑
i

gijxixj



Strategic Complements 
First order conditions imply 

Theorem 
If �max (G) < 1 

�
, there is a unique Nash equilibrium with actions

x = (I − �G)−11.

The vector (I − �G)−11 � K(�, G) gives the Katz-Bonacich 
centralities of the players 

If �max (G) > 1 
�
, there is no equilibrium
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xi = 1 + δ
∑
j 6=i

gijxj



Key Players 
Each player contributes to aggregate activity in proportion to 
centrality 

Suppose this is a model of criminal activity, and we want to 
reduce aggregate crime by targeting key individuals 
• Who do we target?

Write G−i for the network without player i, solve
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
min∑

j 6=i
xj
∗


(δ,G−i) | i = 1, 2, ..., n

We call the solution i∗ the key player

∗
ix (δ,G)∑n

j
∗
j=1 x (δ,G) = ∑

j

Ki(δ,G)
n
=1Kj(δ,G)



Key Players 

Theorem 
If �max < 1 

�
, the key player i� has the highest intercentrality 

ci(�, G)Ki(�, G)2
mii(�, G) 

where M(�, G) = (I − �G)−1

Intercentrality is di˙erent from Katz-Bonacich centrality 

Intuitively, need to capture not only a player’s activity level 
(proportional to Katz-Bonacich centrality), but the player’s 
contribution to others’ centralities as well 
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Key Players: Proof 
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When M(δ,G) is well defined, we have

mji(δ,G)mik(δ,G) = mii(δ,G)
(
mjk(δ,G)−mjk(δ,G−i)

)
∑
j

Kj(δ,G)−
∑
j

Kj(δ,G−i)

= Ki(δ,G) +
∑
j 6=i
Kj(δ,G)−Kj(δ,G−i)

= Ki(δ,G) +
∑
j 6=i

N∑
k=1

(
mjk(δ,G)−mjk(δ,G−i)

)

= Ki(δ,G) +
∑
j 6=i

N∑
k=1

mji(δ,G)mik(δ,G)
mii(δ,G)

= Ki(δ,G)
mii(δ,G)

mii(δ,G) +
∑
j 6=i


mji(δ,G)



Pricing-Consumption Model 
Now suppose we want to price a good that entails local 
externalities 
• How should we set prices?
• How much is information about the network worth?

Set of agents N = {1, 2, ..., n}, weighted network G
• Interpret gij as influence of j on i
• Assume gij � 0, gii = 0
• Do not need gij = gji

Monopolist produces a good, chooses vector p of prices 
• Perfect price discrimination: charge pi to agent i

Evan Sadler Networks Introduction 25/30



Pricing-Consumption Model 
Agent’s utility: 

• Direct benefit aixi − bixi
2

• Social benefit
• Price

Two stage game 
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ui(xi, x−i, pi) = aixi − bixi2 + xi
∑
j 6=i

gijxj − pixi

• Monopolist chooses prices p to maximize ∑i pixi − cxi
• Agents choose usages xi to maximize utilities ui(x, pi)
• Look at subgame perfect equilibria



Consumption Equilibrium 
Work backwards, taking prices as given 

Define diagonal matrix � with �ii = 2bi, let S � N be a subset 
of the agents 

Theorem 

xN−S = 0

for some subset S � N

Evan Sadler Networks Introduction 27/30

xS = (ΛS −GS)−1(aS − pS)

Assume 2bi > 
∑
j∈N gij for all i. For any p, there is a unique

consumption equilibrium of the form



 

Optimal Pricing 

Theorem 
Assume ai > c for all i 2 N . The optimal prices are given by 

Note, under optimal prices, all agents purchase a postiive amount 

Immediate corollary: If G is symmetric, optimal prices are 

a + c1 
p = ,2 

independent of the network structure 
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p = a − (Λ−G)
(

Λ− G+GT

2

)−1 a − c1
2



  

Optimal Pricing 

Recall the Katz-Bonacich centralities K(G, �) = (I − �G)−11

Theorem 
Assume consumers are symmetric, ai = a and bi = b for all i. 
The optimal prices are 

Base price plus markup (influence by others) minus discount 
(influence to others) 
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p = a

2
+ c

1 + a

8
−
b

c
[
GK G+GT

2 ,
1
2b

)
−GT G+GT

2 ,
1
2b

)]
)



Importance of Knowing the Network 
Compare optimal prices ignoring the network to optimal prices 
with perfect information 
• �0 profit assuming gij � 0
• �N optimal profit with network information 

Theorem 
Assume players are symmetric, and define M = � −G and 
M̃ = MM−T +MT M−1 

 . Then, 

From corollary, we know if G = GT , then �0 = �N ; value of 
network information increases with asymmetry of interactions 
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4

1
2 λ+ min

(
M̃
)
≤ Π0

ΠN

1
2≤ + λmax

(
M̃
)
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